The disease-specific survival (DSS) of 151 patients with chronic graft-versushost disease (cGVHD) was studied in an attempt to stratify patients into risk groups and to form a basis for a new grading of cGVHD. The data included the outcome and 23 variables at the diagnosis of cGVHD and at the primary treatment failure (PTF). Eighty-nine patients (58%) failed primary therapy for cGVHD. Nonrelapse mortality was 44% after a median follow-up of 7.8 years. The probability of DSS at 10 years after diagnosis of cGVHD (DSS1) and after PTF (DSS2) was 51% (95% confidence interval [CI] ؍ 39%, 60%) and 38% (95% CI ؍ 28%, 49%), respectively. According to multivariate analysis, extensive skin involvement (ESI) more than 50% of body surface area; hazard ratio (HR) of 7.0 (95% CI ؍ 3.6-13.4), thrombocytopenia (TP) (< 100 000/L; HR, 3.6; 95% CI ؍ 1.9-6.8), and progressivetype onset (PTO) (HR, 1.7; 95% CI ؍ 0.9-3.0) significantly influenced DSS1. These 3 factors and Karnofsky Performance Score of less than 50% at PTF were significant predictors for DSS2. The DSS1 at 10 years for patients with prognostic factor score (PFS) at diagnosis of 0 (none), less than 2 (ESI only or TP and/or PTO), 2 to 3.5 (ESI plus either TP or PTO), and more than 3.5 (all 3 factors) was 82%, 68%, 34%, and 3% (P ؍ .05, < .001, < .001), respectively. The DSS2 at 5 years for patients with PFS at PTF of 0, 2 or less, 2 to 3.5, and more than 3.5 were 91%, 71%, 22%, and 4% (P ؍ .2, .005, and < .001), respectively. It was concluded that these prognostic models might be useful in grouping the patients with similar outcome. (Blood. 2001;97:1219-1226)
Resolution, high signal intensity and elevated signal to noise ratio (SNR) are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF), a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK) with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.
Molecular risk classification by gene expression profiling has clinical impact and influences physicians to direct clinical management of CM patients. The vast majority of the changes implemented after the receipt of test results were reflective of the low or high recurrence risk associated with the patient's molecular classification. Because follow-up data was not collected for this patient cohort, the study is limited for the assessment of the impact of gene expression profile based management changes on healthcare resource utilization and patient outcome.
1. Cells in the superficial layers of the colliculus were studied in immobilized monkeys anesthetized with nitrous oxide. We examined sensitivity to the relative motion between two stimuli: a small target in a cell's receptive field and a large random-dot background pattern that filled most of the visual field outside the receptive field. 2. Most cells were nonselective for either target direction or speed when the background pattern was stationary but were selective for both direction and speed relative to a moving background. Selectivity for relative motion was independent of the absolute direction and speed of both target and background. When both moved at the same speed in the same direction, the response evoked by the target was strongly suppressed. Changing the background direction relative to the target reduced the suppression; suppression was minimal when the two moved in opposite directions. Selectivity for relative direction was broad: the average tuning width at half-amplitude was 136 degrees. When target and background moved in the same direction, increasing or decreasing background speed relative to the target likewise reduced suppression. Average tuning width for relative speed was 1.4 log units. 3. Selectivity for relative motion was a global phenomenon. Suppression was present even when the background pattern was excluded from a region 10 times the receptive-field diameter. However, suppression gradually diminished with increasing distance between the receptive field and the background pattern. 4. Relative motion selectivity was most common in the deeper part of the superficial layers. Ninety percent of the cells below the middle of the stratum griseum superficiale were selective for relative direction, whereas above this level only 45% of the cells were. 5. Cells in the magnocellular and parvocellular layers of the lateral geniculate nucleus did not show selectivity for relative direction. 6. We suggest that the lower one-half of the superficial grey layer and the stratum opticum together constitute a subdivision of the superior colliculus that is specialized to detect strong discontinuities in relative motion. Descending input by way of the corticotectal tract is probably essential for the detection process. the projections from this tectal motion zone to the pulvinar, and from there to prestriate cortex, may provide a feedback pathway through which motion discontinuities such as occur at dynamic occlusion boundaries can influence local feature detection by cortical neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.