Transforming growth factor-beta (TGF-beta) is a potent inhibitor of epithelial cell growth. Human colon cancer cell lines with high rates of microsatellite instability were found to harbor mutations in the type II TGF-beta receptor (RII) gene. Eight such examples, due to three different mutations, were identified. The mutations were clustered within small repeated sequences in the RII gene, were accompanied by the absence of cell surface RII receptors, and were usually associated with small amounts of RII transcript. RII mutation, by inducing the escape of cells from TGF-beta-mediated growth control, links DNA repair defects with a specific pathway of tumor progression.
Examination of a panel of ER positive breast cancer cell lines showed that they were dierentially growth inhibited by vitamin D 3 and its analogue EB1089. EB1089 treatment of the breast cancer cell lines MCF-7 E, BT20, T47D, and ZR75 demonstrated a correlation between a reduction in Cdk2 kinase activity towards phosphorylation of histone H1 and a decrease in DNA synthesis, while no modulation of Cdk2 activity was observed in the vitamin D 3 and EB1089 resistant cell line MCF-7 L. This was accompanied by a time dependent decrease in the percentage of S phase cells in the responsive lines. Characterization of the expression levels of Cdk2 and its related cell cycle proteins in MCF-7 E cells showed that after EB1089 treatment, there was a concentration and time dependent up-regulation of p21 as well as a decrease in cyclin A proteins. Paradoxically, cyclin E levels were increased as a function of treatment. Analysis of cyclin-Cdk2-Cdki complex formation showed that in EB1089 treated MCF-7 E cells, Cdk2, cyclin A and cyclin E immunoprecipitates contained an increased abundance of p21. In contrast to MCF-7 E cells, increases in both p21 and p27 as well as their complex formation with Cdk2 were observed in BT20 and ZR75 cells. These ®ndings indicate that up-regulation of p21 as well as p27 in some cell types may account for the inactivation of Cdk2 activity and a G 1 block of the cell cycle following EB1089 treatment.
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but very little is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with platelet-derived growth factor (PDGF) promoted a striking increase in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. FAK phosphorylation at Ser-910 could be distinguished from that at Tyr-397 in terms of dose-response relationships and kinetics. Furthermore, the selective phosphoinositide 3-kinase (PI 3-kinase) inhibitors wortmannin and LY 294002 abrogated FAK phosphorylation at Tyr-397 but did not interfere with PDGF-induced FAK phosphorylation at Ser-910. Conversely, treatment with U0126, a potent inhibitor of MEK-mediated ERK activation, prevented FAK phosphorylation at Ser-910 induced by PDGF but did not interfere with PDGF-induced FAK phosphorylation at Tyr-397. These results were extended using growth factors that either stimulate, fibroblast growth factor (FGF), or do not stimulate (insulin) the ERK pathway activation in Swiss 3T3 cells. FGF but not insulin promoted a striking ERK-dependent phosphorylation of FAK at Ser-910. Our results indicate that FAK phosphorylation at Tyr-397 and FAK phosphorylation at Ser-910 are induced in response to PDGF stimulation through different signaling pathways, namely PI 3-kinase and ERK, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.