A laboratory-model Hall thruster with a magnetic circuit designed for high-specific impulse (2000-3000 s) was evaluated to determine how current density and magnetic field affect thruster operation. Results have shown for the first time that a minimum current density and optimum magnetic field shape exist at which efficiency will monotonically increase with specific impulse. At the nominal mass flow rate of 10 mg/s and between discharge voltages of 300 and 1000 V, total specific impulse and total efficiency ranged from 1600 to 3400 s and 51 to 61%, respectively. Comparison with a similar thruster showed how efficiency can be optimized for specific impulse by varying the shape of the magnetic field. Plume divergence decreased from a maximum of 48 deg at 400 V to a minimum of 35 deg at 1000 V, but increased between 300 and 400 V as the likely result of a large increase in discharge current oscillations. The breathing-mode frequency continuously increased with voltage, from 14.5 kHz at 300 V to 22 kHz at 1000 V, in contrast to other Hall thrusters where a sharp decrease of the breathing-mode frequency was found to coincide with increasing electron current and decreasing efficiency. These findings suggest that efficient, high-specific impulse operation was enabled through the regulation of the electron current with the applied magnetic field. . Associate Fellow AIAA. η t = total efficiency θ = azimuthal coordinate direction ∇ z B r = axial gradient of the centerline radial magnetic field
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.