Heritable variation in complex traits is generally considered to be conferred by common DNA sequence polymorphisms. We tested whether rare DNA sequence variants collectively contribute to variation in plasma levels of high density lipoprotein cholesterol (HDL-C). We sequenced three candidate genes (ABCA1, APOA1, and LCAT) that cause Mendelian forms of low HDL-C levels in individuals from a population-based study. Nonsynonymous sequence variants were significantly more common (16% versus 2%) in individuals with low HDL-C (95th percentile). Similar findings were obtained in an independent population, and biochemical studies indicated that most sequence variants in the low HDL-C group were functionally important. Thus, rare alleles with major phenotypic effects contribute significantly to low plasma HDL-C levels in the general population.
Engulfment of apoptotic cells by phagocytes is important throughout development and adult life. When phagocytes engulf apoptotic cells, they increase their cellular contents including cholesterol and phospholipids, but how the phagocytes respond to this increased load is poorly understood. Here, we identify one type of a phagocyte response, wherein the recognition of apoptotic cells triggers enhanced cholesterol efflux (to apolipoprotein A-I) from macrophages. Phosphatidylserine (PS) exposed on apoptotic cells was necessary and sufficient to stimulate the efflux response. A major mechanism for this enhanced efflux by macrophages was the upregulation of the mRNA and protein for ABCA1, a membrane transporter independently linked to cholesterol efflux as well as engulfment of apoptotic cells. This increase in phagocyte ABCA1 levels required the function of nuclear receptor LXRalpha/beta, a known regulator of cholesterol homeostasis in humans and mice. Taken together, these data reveal a "homeostatic program" initiated in phagocytes that include a proximal membrane signaling event initiated by PS recognition, a downstream signaling event acting through nuclear receptors, and an effector arm involving upregulation of ABCA1, in turn promoting reverse cholesterol transport from the phagocytes. These data also have implications for macrophage handling of contents derived from apoptotic versus necrotic cells in atherosclerotic lesions.
http://Mcule.com-a web service providing you a fast and cost-effective way to identify and order new drug candidates has been recently launched. The service is available for the public and it provides a comprehensive, carefully curated database of molecules immediately available for virtual screening. Several screening tools have been already implemented and more will be added on a weekly/monthly basis. Screening tools can be seamlessly integrated into a virtual screening workflow. Calculations are running on cloud machines providing a practically infinite number of CPUs and thus fast access to the screening results. Hits from the virtual screens can be ordered.
A structure-based virtual screening (SBVS) was conducted on a ligand-supported homology model of the human histamine H4 receptor (hH4R). More than 8.7 million 3D structures derived from different vendor databases were investigated by docking to the hH4R binding site using FlexX. A total of 255 selected compounds were tested by radioligand binding assay and 16 of them possessed significant [(3)H]histamine displacement. Several novel scaffolds were identified that can be used to develop selective H4 ligands in the future. As far as we know, this is the first SBVS reported on H4R, representing one of the largest virtual screens validated by the biological evaluation of the virtual hits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.