The relationship between the use of tumor necrosis factor antagonists and onset of granulomatous infection was examined using data collected through the Adverse Event Reporting System of the US Food and Drug Administration for January 1998-September 2002. Granulomatous infections were reported at rates of approximately 239 per 100,000 patients who received infliximab and approximately 74 per 100,000 patients who received etanercept (P<.001). Tuberculosis was the most frequently reported disease, occurring in approximately 144 and approximately 35 per 100,000 infliximab-treated and etanercept-treated patients, respectively (P<.001). Candidiasis, coccidioidomycosis, histoplasmosis, listeriosis, nocardiosis, and infections due to nontuberculous mycobacteria were reported with significantly greater frequency among infliximab-treated patients. Seventy-two percent of these infection occurred < or =90 days after starting infliximab treatment, and 28% occurred after starting etanercept treatment (P<.001). These data indicate a risk of granulomatous infection that was 3.25-fold greater among patients who received infliximab than among those who received etanercept. The clustering of reports shortly after initiation of treatment with infliximab is consistent with reactivation of latent infection.
Anti-tumour necrosis factor (TNF) monoclonal antibodies or soluble TNF receptors have become an invaluable treatment against chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Individuals who are treated with TNF antagonists are at an increased risk of reactivating latent infections, especially tuberculosis (TB).Following TNF antagonist therapy, the relative risk for TB is increased up to 25 times, depending on the clinical setting and the TNF antagonist used. Interferon-c release assays or, as an alternative in individuals without a history of bacille Calmette-Guérin vaccination, tuberculin skin testing is recommended to screen all adult candidates for TNF antagonist treatment for the presence of latent infection with Mycobacterium tuberculosis.Moreover, paediatric practice suggests concomitant use of both the tuberculin skin test and an interferon-c release assay, as there are insufficient data in children to recommend one test over the other. Consequently, targeted preventive chemotherapy is highly recommended for all individuals with persistent M. tuberculosis-specific immune responses undergoing TNF antagonist therapy as it significantly reduces the risk of progression to TB. This TBNET consensus statement summarises current knowledge and expert opinions and provides evidence-based recommendations to reduce the TB risk among candidates for TNF antagonist therapy.KEYWORDS: Interferon-c release assay, tuberculin skin test, tuberculosis, tumour necrosis factor T umour necrosis factor (TNF) and TNF receptors play a key role in mediating immune responses in acute and chronic inflammation [1][2][3]. Over the past decade, TNF antagonists in the form of anti-TNF monoclonal antibodies or TNF fusion protein have become an invaluable treatment against chronic inflammatory diseases, such as rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis, juvenile idiopathic arthritis and inflammatory bowel disease [4][5][6][7]. Tuberculosis (TB) is a granulomatous disease caused by infection with Mycobacterium tuberculosis.Most of the individuals who are thought to have become infected with M. tuberculosis will never develop TB due to the control exercised by the host immune system [8,9]. One of the key cytokines in the immune response against infection with M. tuberculosis is TNF, which is also critical for the integrity of the granuloma [10]. Individuals who are being treated with anti-TNF therapies are at increased risk of developing TB. Following TNF antagonist therapy, the relative risk for TB is increased 1.6-25.1 times, depending on the clinical setting and the TNF antagonist used [4,7,11,12]. The majority of cases of TB related to TNF antagonist therapies occur in close temporal proximity to
SummaryBackgroundTuberculosis is the world's leading infectious disease killer. We aimed to identify shorter, safer drug regimens for the treatment of tuberculosis.MethodsWe did a randomised controlled, open-label trial with a multi-arm, multi-stage design. The trial was done in seven sites in South Africa and Tanzania, including hospitals, health centres, and clinical trial centres. Patients with newly diagnosed, rifampicin-sensitive, previously untreated pulmonary tuberculosis were randomly assigned in a 1:1:1:1:2 ratio to receive (all orally) either 35 mg/kg rifampicin per day with 15–20 mg/kg ethambutol, 20 mg/kg rifampicin per day with 400 mg moxifloxacin, 20 mg/kg rifampicin per day with 300 mg SQ109, 10 mg/kg rifampicin per day with 300 mg SQ109, or a daily standard control regimen (10 mg/kg rifampicin, 5 mg/kg isoniazid, 25 mg/kg pyrazinamide, and 15–20 mg/kg ethambutol). Experimental treatments were given with oral 5 mg/kg isoniazid and 25 mg/kg pyrazinamide per day for 12 weeks, followed by 14 weeks of 5 mg/kg isoniazid and 10 mg/kg rifampicin per day. Because of the orange discoloration of body fluids with higher doses of rifampicin it was not possible to mask patients and clinicians to treatment allocation. The primary endpoint was time to culture conversion in liquid media within 12 weeks. Patients without evidence of rifampicin resistance on phenotypic test who took at least one dose of study treatment and had one positive culture on liquid or solid media before or within the first 2 weeks of treatment were included in the primary analysis (modified intention to treat). Time-to-event data were analysed using a Cox proportional-hazards regression model and adjusted for minimisation variables. The proportional hazard assumption was tested using Schoelfeld residuals, with threshold p<0·05 for non-proportionality. The trial is registered with ClinicalTrials.gov (NCT01785186).FindingsBetween May 7, 2013, and March 25, 2014, we enrolled and randomly assigned 365 patients to different treatment arms (63 to rifampicin 35 mg/kg, isoniazid, pyrazinamide, and ethambutol; 59 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, SQ109; 57 to rifampicin 20 mg/kg, isoniazid, pyrazinamide, and SQ109; 63 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, and moxifloxacin; and 123 to the control arm). Recruitment was stopped early in the arms containing SQ109 since prespecified efficacy thresholds were not met at the planned interim analysis. Time to stable culture conversion in liquid media was faster in the 35 mg/kg rifampicin group than in the control group (median 48 days vs 62 days, adjusted hazard ratio 1·78; 95% CI 1·22–2·58, p=0·003), but not in other experimental arms. There was no difference in any of the groups in time to culture conversion on solid media. 11 patients had treatment failure or recurrent disease during post-treatment follow-up: one in the 35 mg/kg rifampicin arm and none in the moxifloxacin arm. 45 (12%) of 365 patients reported grade 3–5 adverse events, with similar proportions in each arm.Interpr...
Tuberculosis kills more people than any other infectious disease. Three pivotal trials testing 4-month regimens failed to meet non-inferiority margins; however, approximately four-fifths of participants were cured. Through a pooled analysis of patient-level data with external validation, we identify populations eligible for 4-month treatment, define phenotypes that are hard to treat and evaluate the impact of adherence and dosing strategy on outcomes. In 3,405 participants included in analyses, baseline smear grade of 3+ relative to <2+, HIV seropositivity and adherence of ≤90% were significant risk factors for unfavorable outcome. Four-month regimens were non-inferior in participants with minimal disease defined by <2+ sputum smear grade or non-cavitary disease. A hard-to-treat phenotype, defined by high smear grades and cavitation, may require durations >6 months to cure all. Regimen duration can be selected in order to improve outcomes, providing a stratified medicine approach as an alternative to the ‘one-size-fits-all’ treatment currently used worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.