Accurate state-estimation is a vital prerequisite for fast feedback control methods such as Nonlinear Model Predictive Control (NMPC). For efficient process control, it is of great importance that the estimation process is carried out as fast as possible to provide the feedback mechanism with fresh information and enable fast reactions in case of any disturbances. We discuss how Multi-Level Iterations (MLI), known from NMPC, can be applied to the Moving Horizon Estimation (MHE) method for estimating the states and parameters of a system described by a Differential Algebraic Equation model. A challenging field of application for the proposed MLI-MHE method are electric microgrids. These push current control approaches to their limits due to the rising penetration of volatile renewable energy sources and the fast electrical system dynamics. We investigate the closed-loop control performance of the proposed MLI-MHE algorithm in combination with an NMPC controller for a realistic sized microgrid as a numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.