NEMO (NF-κB essential modulator) associates with the catalytic subunits IKKα and IKKβ to form the IκB kinase (IKK) complex, and is a key regulator of NF-κB pathway signaling. Biochemical and structural characterization of NEMO has been challenging, however, leading to conflicting data on basic biochemical properties such as the oligomeric state of active NEMO and its binding affinity for IKKβ. We show that up to seven of NEMO’s 11 cysteine residues can be mutated to generate recombinant full-length NEMO that is highly soluble and active. Using a fluorescence anisotropy binding assay we show that full-length NEMO binds a 44-mer peptide encompassing residues 701-745 of IKKβ with KD = 2.2 ± 0.8 nM. The IKKβ binding affinities of mutants with five and seven Cys-to-Ala substitutions are indistinguishable from that of wild-type NEMO. Moreover, when expressed in NEMO −/− fibroblasts, the 5xAla and 7xAla NEMO mutants can interact with cellular IKKβ and restore NF-κB signaling to provide protection against TNFα-induced cell death. Treatment of the NEMO-reconstituted cells with H2O2 led to formation of covalent dimers for wild-type NEMO and the 5xAla mutant, but not for the 7xAla mutant, confirming that Cys54 and/or Cys347 can mediate inter-chain disulfide bonding. However, the IKKβ binding affinity of NEMO is unaffected by the presence or absence of inter-chain disulfide bonding at Cys54 – which lies within the IKKβ binding domain of NEMO – or at Cys347, indicating that NEMO exists as a noncovalent dimer independent of the redox state of its cysteines. This conclusion was corroborated by the observation that the secondary structure content of NEMO and its thermal stability were independent of the presence or absence of inter-chain disulfide bonds.
NF-κB essential modulator (NEMO) regulates NF-κB signaling by acting as a scaffold for the kinase IKKβ to direct its activity toward the NF-κB inhibitor, IκBα. Here, we show that a highly conserved central region of NEMO termed the intervening domain (IVD, amino acids 112−195) plays a key role in NEMO function. We determined a structural model of full-length NEMO by small-angle X-ray scattering and show that full-length, wild-type NEMO becomes more compact upon binding of a peptide comprising the NEMO binding domain of IKKβ (amino acids 701−745). Mutation of conserved IVD residues (9SG-NEMO) disrupts this conformational change in NEMO and abolishes the ability of NEMO to propagate NF-κB signaling in cells, although the affinity of 9SG-NEMO for IKKβ compared to that of the wild type is unchanged. On the basis of these results, we propose a model in which the IVD is required for a conformational change in NEMO that is necessary for its ability to direct phosphorylation of IκBα by IKKβ. Our findings suggest a molecular explanation for certain disease-associated mutations within the IVD and provide insight into the role of conformational change in signaling scaffold proteins.
Lafora disease (LD) is a fatal juvenile epilepsy, characterized by the accumulation of aberrant glucan aggregates called Lafora Bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and has been proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay (ELISA) has been developed to detect VAL-0417 post treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found intracerebroventricular administration (ICV) provided robust CNS delivery when compared to intrathecal administration (IT). These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.