Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.
Transition metal reactivity toward carbon–hydrogen (C–H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C–H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C–H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C–H reactivity at transition metals.
In this paper, we present a spectrometer that is designed for element-specific and time-resolved transverse magneto-optic Kerr effect experiments at the high-harmonic generation pump-probe facility High Energy Laser Induced Overtone Source (HELIOS) laboratory. HELIOS delivers photons with energies between 30 eV and 72 eV with an overall time resolution of less than 40 fs. The spectrometer is based on a Rowland-circle geometry and allows for simultaneous measurements of all magnetic transition-metal elements. The setup also features easy sample transfer and alignment, and it combines high photon throughput, optimized data acquisition, and a fast switching of the magnetic field at the sample. The spectrometer performance is demonstrated by measuring the ultrafast demagnetization of permalloy. Our data are, for all practical purposes, identical to what have been reported in the earlier high-order harmonic generation work of a similar sample by Mathias et al. [Proc. Natl. Acad. Sci. U. S. A. 109, 4792-4797 (2012)], however, obtained within 15% of the acquisition time compared to their study. Furthermore, our data show a shift of the demagnetization curve of Ni relative to Fe, which has previously been interpreted as a delay of the Ni demagnetization to that of Fe [S. Mathias et al., Proc. Natl. Acad. Sci. U. S. A. 109, 4792-4797 (2012)].
The magneto-optical response of Fe and Ni during ultrafast demagnetization is studied experimentally and theoretically. We have performed pump-probe experiments in the transverse magnetooptical Kerr effect (T-MOKE) geometry using photon energies that cover the M-absorption edges of Fe and Ni between 40 to 72 eV. The asymmetry was detected by measuring the reflection of light for two different orientations of the sample magnetization. Density functional theory (DFT) was used to calculate the magneto-optical response of different magnetic configurations, representing different types of excitations: long-wavelength magnons, short wavelength magnons, and Stoner excitations. In the case of Fe, we find that the calculated asymmetry is strongly dependent on the specific type of magnetic excitation. Our modelling also reveals that during remagnetization Fe is, to a reasonable approximation, described by magnons, even though small non-linear contributions could indicate some degree of Stoner excitations as well. In contrast, we find that the calculated asymmetry in Ni is rather insensitive to the type of magnetic excitations. However, there is a weak non-linearity in the relation between asymmetry and the off-diagonal component of the dielectric tensor, which does not originate from the modifications of the electronic structure. Our experimental and theoretical results thus emphasize the need of considering a coupling between asymmetry and magnetization that may be more complex that a simple linear relationship. This insight is crucial for the microscopic interpretation of ultrafast magnetization experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.