HypothesisA prototypical modelling approach is required for a full characterisation of the static and equilibrium dynamical properties of confined ionic liquids (ILs), in order to gain predictive power of properties that are difficult to extract from experiments. Such a protocol needs to be constructed by benchmarking molecular dynamics simulations against available experiments.
SimulationsWe perform an in-depth study of [C 2 Mim] + [NTf 2 ]in bulk, at the vacuum and at hydroxylated alumina surface. Using the charge methods CHelpG, RESP-HF and RESP-B3LYP with charge scaling factors 1.0, 0.9 and 0.85, we search for an optimum non-polarizable force field by benchmarking against self-diffusion coefficients, surface tension, X-ray reflectivity data, and structural data.
FindingsBenchmarking, which relies on establishing the significance of an appropriate size of the model systems and the length of the simulations, yields RESP-HF/0.9 as the best suited force field for this IL overall. A complete and accurate characterisation of the spatially-dependent internal configurational space and orientation of IL molecules relative to the solid and vacuum interfaces is obtained. Furthermore, the density and mobility of IL ions in the plane parallel and normal to the interfaces is evaluated and the correlation between the stratification and dynamics in the interfacial layers is detectable deep into the films.
Supported ionic liquid phase (SILP) catalysis enables a highly efficient, Ru‐based, homogeneously catalyzed water‐gas shift reaction (WGSR) between 100 °C and 150 °C. The active Ru‐complexes have been found to exist in imidazolium chloride melts under operating conditions in a dynamic equilibrium, which is dominated by the [Ru(CO)3Cl3]− complex. Herein we present state‐of‐the‐art theoretical calculations to elucidate the reaction mechanism in more detail. We show that the mechanism includes the intermediate formation and degradation of hydrogen chloride, which effectively reduces the high barrier for the formation of the requisite dihydrogen complex. The hypothesis that the rate‐limiting step involves water is supported by using D2O in continuous catalytic WGSR experiments. The resulting mechanism constitutes a highly competitive alternative to earlier reported generic routes involving nucleophilic addition of hydroxide in the gas phase and in solution.
In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth. File list (2) download file view on ChemRxiv ASP-230919-Manuscript.pdf (773.33 KiB) download file view on ChemRxiv ASP-230919-SI.pdf (1.78 MiB)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.