While we would like to predict exact values, the information available, being incomplete, is rarely sufficient - usually allowing only conditional probability distributions to be predicted. This article discusses hierarchical correlation reconstruction (HCR) methodology for such a prediction using the example of bid-ask spreads (usually unavailable), but here predicted from more accessible data like closing price, volume, high/low price and returns. Using HCR methodology, as in copula theory, we first normalized marginal distributions so that they were nearly uniform. Then we modelled joint densities as linear combinations of orthonormal polynomials, obtaining their decomposition into mixed moments. Then we modelled each moment of the predicted variable separately as a linear combination of mixed moments of known variables using least squares linear regression. By combining these predicted moments, we obtained the predicted density as a polynomial, for which we can e.g. calculate the expected value, but also the variance to determine the uncertainty of the prediction, or we can use the entire distribution for, e.g. more accurate further calculations or generating random values. 10-fold cross-validation log-likelihood tests were conducted for 22 DAX companies, leading to very accurate predictions, especially when individual models were used for each company, as significant differences were found between their behaviours. An additional advantage of using this methodology is that it is computationally inexpensive; estimating and evaluating a model with hundreds of parameters and thousands of data points by means of this methodology takes only a second on a computer.
Financial contagion refers to the spread of market turmoils, for example from one country or index to another country or another index. It is standardly assessed by modelling the evolution of the correlation matrix, for example of returns, usually after removing univariate dynamics with the GARCH model. However, significant events like crises visible in one financial market are usually reflected in other financial markets/countries simultaneously in several dimensions, i.e., in general, entire distributions of returns in other markets are affected. These distributions are determined/described by their expected value, variance, skewness, kurtosis and other statistics that determine the shape of the distribution function of returns, which can be based on higher (mixed) moments. These descriptive statistics are not constant over time, and, moreover, they can interreact within the given market and among the markets over time. In this article we propose, and use for the daily values of five indexes (CAC40, DAX30, DJIA, FTSE250 and WIG20) over the time period 2006–2017, a new, simple and computationally inexpensive methodology to automatically extend contagion evaluation from the evolution of the correlation matrix to the evolution of multiple higher mixed moments as well. Specifically, the joint distribution of normalized variables for each pair of indexes is modeled as a polynomial with time evolving coefficients estimated using an exponential moving average. As we can obtain any arbitrary number of evolving mixed moments this way, its dimensionality reduction using PCA (principal component analysis) is also discussed, obtaining a lower number of dominating and relatively independent features, which can each be interpreted through a polynomial that describes the corresponding perturbation of joint distribution. We obtain features that describe the interrelations among stock markets in several dimensions and that provide information about the current stage of crisis and the strength of the contagion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.