A growing literature suggests that catecholamines and corticotropin releasing factor (CRF) interact in a serial manner to activate the bed nucleus of the stria terminalis (BNST) in order to drive stress- or cue-induced drug- and alcohol-seeking behaviors. Data suggests that these behaviors are driven in part by BNST projections to the ventral tegmental area (VTA). Together these findings suggest the existence of a CRF-signaling pathway within the BNST that is engaged by catecholamines and regulates the activity of BNST neurons projecting to the VTA. Here we test three aspects of this model: 1) whether catecholamines modify CRF neuron activity in the BNST, 2) whether CRF regulates excitatory drive onto VTA-projecting BNST neurons, and 3) whether this system is altered by ethanol exposure and withdrawal. A CRF neuron fluorescent reporter strategy was utilized to identify BNST CRF neurons for whole cell patch clamp analysis in acutely prepared slices. Using this approach, we found that both dopamine and isoproterenol significantly depolarized BNST CRF neurons. Furthermore, using a fluorescent microsphere based identification strategy; we found that CRF enhances the frequency of spontaneous EPSCs onto VTA-projecting BNST neurons in naïve mice. This action of CRF was occluded during acute withdrawal from chronic intermittent ethanol exposure. These findings suggest that dopamine and isoproterenol may enhance CRF release from local BNST sources, leading to enhancement of excitatory neurotransmission on VTA-projecting neurons, and that this pathway is engaged by patterns of alcohol exposure and withdrawal known to drive excessive alcohol intake.
The regulated release of anorexigenic α-MSH and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the CNS plays a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data showα-MSH is an agonist that couples the receptor to the Gαs signaling pathway1, while AgRP binds competitively to block α-MSH binding2, and block the constitutive activity mediated by the ligand-mimetic amino terminal domain of the receptor3. Here, we show that regulation of firing activity of hypothalamic PVN neurons by α-MSH and AgRP can be mediated independently of Gαs signaling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.1. Further, AgRP is a biased agonist that hyperpolarizes neurons by binding to MC4R and opening Kir7.1, independently of its inhibition of α-MSH binding. Consequently, Kir7.1 signaling appears central to melanocortin-mediated regulation of energy homeostasis within the PVN. Coupling of MC4R to Kir7.1 may explain unusual aspects of the control of energy homeostasis by melanocortin signaling, including the gene dosage effect of MC4R4, and the sustained effects of AgRP on food intake5.
A common feature of drugs of abuse is their ability to increase extracellular dopamine levels in key brain circuits. The actions of dopamine within these circuits are thought to be important in reward and addiction-related behaviors. Current theories of addiction also posit a central role for corticotrophin-releasing factor (CRF) and an interaction between CRF and monoaminergic signaling. One region where drugs of abuse promote robust rises in extracellular dopamine levels is the bed nucleus of the stria terminalis (BNST), a CRF-rich component of the extended amygdala. We find that dopamine rapidly enhances glutamatergic transmission in the BNST through activation of a combination of D 1 -and D 2 -like receptors. This enhancement is activity-dependent and requires the downstream action of CRF receptor 1 (CRF-R1), suggesting that dopamine induces CRF release through a local network mechanism. Furthermore, we found that both in vivo and ex vivo cocaine induced a dopamine receptor and CRF-R1-dependent enhancement of a form of NMDA receptordependent short-term potentiation in the BNST. These data highlight a direct and rapid interaction between dopamine and CRF systems that regulates excitatory transmission and plasticity in a brain region key to reinforcement and reinstatement. Because a rise in extracellular dopamine levels in the BNST is a shared consequence of multiple classes of drugs of abuse, this suggests that the CRF-R1-dependent enhancement of glutamatergic transmission in this region may be a common key feature of substances of abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.