The first three sections below provide some background information on Avida and the logic functions that digital organisms perform. The fourth section provides some additional data on phenotypic and genomic evolution along the line of descent in the case-study population, up to the time of origin of the EQU function.The Avida program and configuration files used in our experiments can be obtained free at myxo.css.msu.edu/papers/nature2003/. One can also view more background information about Avida as well as additional data from our experiments.
Abstract-This paper investigates how an evolutionary algorithm with an indirect encoding exploits the property of phenotypic regularity, an important design principle found in natural organisms and engineered designs. We present the first comprehensive study showing that such phenotypic regularity enables an indirect encoding to outperform direct encoding controls as problem regularity increases. Such an ability to produce regular solutions that can exploit the regularity of problems is an important prerequisite if evolutionary algorithms are to scale to high-dimensional real-world problems, which typically contain many regularities, both known and unrecognized. The indirect encoding in this case study is HyperNEAT, which evolves artificial neural networks (ANNs) in a manner inspired by concepts from biological development. We demonstrate that, in contrast to two direct encoding controls, HyperNEAT produces both regular behaviors and regular ANNs, which enables HyperNEAT to significantly outperform the direct encodings as regularity increases in three problem domains. We also show that the types of regularities HyperNEAT produces can be biased, allowing domain knowledge and preferences to be injected into the search. Finally, we examine the downside of a bias toward regularity. Even when a solution is mainly regular, some irregularity may be needed to perfect its functionality. This insight is illustrated by a new algorithm called HybrID that hybridizes indirect and direct encodings, which matched HyperNEAT's performance on regular problems yet outperformed it on problems with some irregularity. HybrID's ability to improve upon the performance of HyperNEAT raises the question of whether indirect encodings may ultimately excel not as stand-alone algorithms, but by being hybridized with a further process of refinement, wherein the indirect encoding produces patterns that exploit problem regularity and the refining process modifies that pattern to capture irregularities. This paper thus paints a more complete picture of indirect encodings than prior studies because it analyzes the impact of the continuum between irregularity and regularity on the performance of such encodings, and ultimately suggests a path forward that combines indirect encodings with a separate process of refinement.
Abstract-Legged robots show promise for complex mobility tasks, such as navigating rough terrain, but the design of their control software is both challenging and laborious. Traditional evolutionary algorithms can produce these controllers, but require manual decomposition or other problem simplification because conventionally-used direct encodings have trouble taking advantage of a problem's regularities and symmetries. Such active intervention is time consuming, limits the range of potential solutions, and requires the user to possess a deep understanding of the problem's structure. This paper demonstrates that HyperNEAT, a new and promising generative encoding for evolving neural networks, can evolve quadruped gaits without an engineer manually decomposing the problem. Analyses suggest that HyperNEAT is successful because it employs a generative encoding that can more easily reuse phenotypic modules. It is also one of the first neuroevolutionary algorithms that exploits a problem's geometric symmetries, which may aid its performance. We compare HyperNEAT to FT-NEAT, a direct encoding control, and find that HyperNEAT is able to evolve impressive quadruped gaits and vastly outperforms FT-NEAT. Comparative analyses reveal that HyperNEAT individuals are more holistically affected by genetic operators, resulting in better leg coordination. Overall, the results suggest that HyperNEAT is a powerful algorithm for evolving control systems for complex, yet regular, devices, such as robots.
Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This paper is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.
Responsible conduct of research training typically includes only a subset of the issues that ought to be included in science ethics and sometimes makes ethics appear to be a set of externally imposed rules rather than something intrinsic to scientific practice. A new approach to science ethics training based upon Pennock’s notion of the scientific virtues may help avoid such problems. This paper motivates and describes three implementations—theory-centered, exemplar-centered, and concept-centered—that we have developed in courses and workshops to introduce students to this scientific virtue-based approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.