The idea that social motivation deficits play a central role in Autism Spectrum Disorders (ASD) has recently gained increased interest. This constitutes a shift in autism research, which has traditionally focused more intensely on cognitive impairments, such as Theory of Mind deficits or executive dysfunction, while granting comparatively less attention to motivational factors. This review delineates the concept of social motivation and capitalizes on recent findings in several research areas to provide an integrated picture of social motivation at the behavioral, biological and evolutionary levels. We conclude that ASD can be construed as an extreme case of diminished social motivation and, as such, provides a powerful model to understand humans’ intrinsic drive to seek acceptance and avoid rejection.
When viewing naturalistic social situations, individuals with autism demonstrate abnormal patterns of social visual pursuit consistent with reduced salience of eyes and increased salience of mouths, bodies, and objects. Fixation times on mouths and objects but not on eyes are strong predictors of degree of social competence.
Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins1 -4. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs5 -9. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ~550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11 , 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10 −3 ). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10 −3 ). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10 −6 ). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.ASDs, including autism, are neurodevelopmental disorders characterized by impairments in social and communication skills, as well as stereotyped and repetitive behaviours and/or a restricted range of interests. Current prevalence estimates in the United States are 0.1-0.2% for autism and 0.6% for ASDs 1,2 .Linkage and candidate gene association studies have implicated several chromosomal regions in autism 3,4 . However, positive findings in one study often fail to replicate in other studies, and a consistent picture of susceptibility loci in autism is still lacking. Some telling clues about ASD genetics arose from recent studies on CNVs 5 , including the association of de novo CNVs with ASDs 6 . Although de novo CNVs that disrupt specific genes may contribute to the pathogenesis of ASDs, heritable CNVs are much more common but have been less studied as risk factors of ASDs. A family-based genome-wide linkage and CNV analysis by the Autism Genome Project Consortium using Affymetrix 10K single nucleotide polymorphism (SNP) arrays implicated chromosome 11p12-13 and neurexin 1 (NRXN1) as candidate loci 7 . A study using the Affymetrix 500K SNP array in a Canadian population reported 277 rare CNVs that were only observed in ASD patients but not in 1,652 healthy controls or in the Database of Genomic Variants 8 . Furthermore, 16p11.2 deletions and Glessner et al.Page 2 Nature. Author manuscript; available in PMC 2010 August 23. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscri...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.