Chromatic adaptation in crustaceans results from the differential distribution of colored pigment granules within their chromatophores consequent to cell signaling by neurosecretory peptides. However, the force transducing, mechanochemical protein motors responsible for granule translocation, and their molecular mechanisms of action, are not well understood. The present study uses immunocytochemical techniques and a motility assay in vitro to demonstrate that protein motors from the kinesin and myosin superfamilies are stably associated with membrane-bounded pigment granules in the red, ovarian chromatophores of the freshwater, palaemonid shrimp, Macrobrachium olfersii. Monoclonal antibodies against conventional kinesin heavy chain, and an anti-myosin whole serum, labeled pigment-containing fragments prepared from homogenates of chromatophores with fully dispersed or aggregated pigments: this finding infers a permanent association between the protein motors and the pigment granules, and suggests that such motors may be regulated while bound to their cargos. The pigment aggregator appears to be a myosin since the anti-myosin whole serum attenuated hormonally triggered pigment aggregation in the motility assay in vitro, and induced pigment hyper-dispersion in some chromatophores. Western blots of the chromatophore-containing, ovarian tissue homogenate demonstrated protein bands consistent with myosin II and myosin XII, either of which may be the pigment aggregator. This study provides the first direct evidence for myosin and kinesin protein motors directly and stably associated with pigment granules in crustacean chromatophores, and may represent the first successful isolation of myosin class XII.
We provide ultrastructural and cytological evidence that the tentacles of the sea anemone Bunodosoma cangicum does not contain cytotoxic venom. However, we show that the stimulated secretion of an apparent mixture of biomolecules containing polypeptides from the columnar vesicles of Bunodosoma cangicum is apparently a potent inducer of apoptosis in the zebrafish cell line, ZF-L. Microscopic fluorescence, cell morphology and flow cytometric assays confirm the apoptotic activity. Crude vesicle venom was partially purified by size exclusion chromatography. PAGE analysis shows that this venom contains low weight polypeptides but no measurable protein. The apoptotic activity is heat labile, and the observed peptides concurrent with this activity have a molecular weight of approximately 2000 Da. This manuscript is the first report of biologically active molecules and peptides associated with columnar vesicles of anemones, and the first to confirm that the tentacles of B. cangicum do not contain cytotoxic venom, and express spirocytes exclusively.
A model for intracellular transport of pigment granules in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi is proposed on the basis of shifts in the equilibrium of resting forces acting on an elastic pigment matrix. The model describes a pigment-transport mechanism in which mechanochemical protein motors like kinesin and myosin alternately stretch and compress a structurally unified, elastic pigment matrix. Quantifiable properties of the spring-matrix obey Hooke's Law during the rapid phases of pigment aggregation and dispersion. The spring-like response of the pigment mass is estimated from previous kinetic experiments on pigment translocation induced by red pigment concentrating hormone, or by the calcium ionophore A23187. Both translocation effectors trigger an initial phase of rapid pigment aggregation, and their removal or washout after complete aggregation produces a phase of rapid pigment dispersion, followed by slow pigment translocation. The rapid-phase kinetics of pigment transport are in reasonable agreement with Hooke's Law, suggesting that such phases represent the release of kinetic energy, probably produced by the mechanochemical protein motors and stored in the form of matrix deformation during the slow phases of translocation. This semiquantitative model should aid in analyzing intracellular transport systems that incorporate an elastic component.
The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.