Oral drug absorption is known to be impacted by the physicochemical properties of drugs, properties of oral formulations, and physiological characteristics of the intestine. The goal of the present study was to develop a mathematical model to predict the impact of particle size, feeding time, and intestinal transporter activity on oral absorption. A previously published rat continuous intestine absorption model was extended for solid drug absorption. The impact of active pharmaceutical ingredient particle size was evaluated with glyburide (GLY) as a model drug. Two particle size suspensions of glyburide were prepared with average particle sizes of 42.7 and 4.1 μm. Each suspension was dosed as a single oral gavage to male Sprague Dawley rats, and concentration–time (C–t) profiles of glyburide were measured with liquid chromatography coupled with tandem mass spectrometry. A continuous rat intestine absorption model was extended to include drug dissolution and was used to predict the absorption kinetics of GLY depending on particle size. Additional literature datasets of rat GLY formulations with particle sizes ranging from 0.25 to 4.0 μm were used for model predictions. The model predicted reasonably well the absorption profiles of GLY based on varying particle size and varying feeding time. The model predicted inhibition of intestinal uptake or efflux transporters depending on the datasets. The three datasets used formulations with different excipients, which may impact the transporter activity. Model simulations indicated that the model provides a facile framework to predict the impact of transporter inhibition on drug C–t profiles. Model simulations can also be conducted to evaluate the impact of an altered intestinal lumen environment. In conclusion, the rat continuous intestine absorption model may provide a useful tool to predict the impact of varying drug formulations on rat oral absorption profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.