Background: In the setting of the COVID-19 pandemic, the conduct of elective cancer surgery has become an issue because of the need to balance the requirement to treat patients with the possibility of transmission of the virus by asymptomatic carriers. A particular concern is the potential for viral transmission by way of aerosol which may be generated during perioperative care. There are currently no guidelines for the conduct of elective lung resection surgery in this context. Methods: A working group composed of 1 thoracic surgeon, 2 anesthesiologists and 1 critical care specialist assessed the risk for aerosol during lung resection surgery and proposed steps for mitigation. After external review, a final draft was approved by the Committee for the Governance of Perioperative and Surgical Activities of the Hôpital Maisonneuve-Rosemont, in Montreal, Canada. Results: The working group divided the risk for aerosol into 6 time-points: (1) intubation and extubation; (2) Lung isolation and patient positioning; (3) access to the chest; (4) conduct of the surgical procedure; (5) procedure termination and lung re-expansion; (6) chest drainage. Mitigating strategies were proposed for each time-point. Conclusions: The situation with COVID-19 is an opportunity to re-evaluate operating room protocols both for the purposes of this pandemic and similar situations in the future. In the context of lung resection surgery, specific time points during the procedure seem to pose specific risks for the genesis of aerosol and thus should be the focus of attention.
The COVID-19 pandemic has caused personal protective equipment shortages worldwide and required healthcare workers to develop novel ways of protecting themselves. Anesthesiologists in particular are exposed to increased risks of contamination when performing interventions such as airway manipulations. We developed and tested an aerosolization protective device which contains aerosols around the patient’s airway and helps eliminate particles using negative pressure. This intubation box is a polymethyl methacrylate prism with openings for gloves, integrated suction and ventilation connectors. We conducted a randomised controlled series of tests to detect 0.5 µm particles after a simulated cough inside the intubation box, using a high-fidelity simulation mannequin. Setting and main outcome : We measured particle concentrations inside the box with and without suction turned on, in both negative and positive pressure operating rooms. We also obtained particle concentrations outside our box and compared them to non-airtight barrier devices. One minute following simulated cough, the mean number of particles per cubic foot in our box with suction on is around 45% that with the suction off (1,462,373 vs 3,272,080, P < 0.0001) in the negative pressure room, and four times lower than with the suction off (760,380 vs 3,088,700, P < 0.0001) in the positive pressure room. After a simulated cough inside the box, particles can be detected in front of the anesthesiologist’s face with a non-airtight device, while none are detected when our box is sealed and its suction turned on. The use of our negative pressure intubation box prevents contamination of surroundings and increases particle elimination, regardless of room pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.