Mycobacterium tuberculosis synthesizes intra- and extracellular α-glucans that were believed to originate from separate pathways. The extracellular glucose polymer is the main constituent of the mycobacterial capsule that is thought to be involved in immune evasion and virulence. However, the role of the α-glucan capsule in pathogenesis has remained enigmatic due to an incomplete understanding of α-glucan biosynthetic pathways preventing the generation of capsule-deficient mutants. Three separate and potentially redundant pathways had been implicated in α-glucan biosynthesis in mycobacteria: the GlgC-GlgA, the Rv3032 and the TreS-Pep2-GlgE pathways. We now show that α-glucan in mycobacteria is exclusively assembled intracellularly utilizing the building block α-maltose-1-phosphate as the substrate for the maltosyltransferase GlgE, with subsequent branching of the polymer by the branching enzyme GlgB. Some α-glucan is exported to form the α-glucan capsule. There is an unexpected convergence of the TreS-Pep2 and GlgC-GlgA pathways that both generate α-maltose-1-phosphate. While the TreS-Pep2 route from trehalose was already known, we have now established that GlgA forms this phosphosugar from ADP-glucose and glucose 1-phosphate 1000-fold more efficiently than its hitherto described glycogen synthase activity. The two routes are connected by the common precursor ADP-glucose, allowing compensatory flux from one route to the other. Having elucidated this unexpected configuration of the metabolic pathways underlying α-glucan biosynthesis in mycobacteria, an M. tuberculosis double mutant devoid of α-glucan could be constructed, showing a direct link between the GlgE pathway, α-glucan biosynthesis and virulence in a mouse infection model.
Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.
Tuberculosis can be treated with a 6-month regimen of antibiotics. Although the targets of most of the first-line antibiotics have been identified, less research has focused on the intrabacterial stress responses that follow upon treatment with antibiotics. Studying the roles of these stress genes may lead to the identification of crucial stress-coping mechanisms that can provide additional drug targets to increase treatment efficacy. A threegene operon with unknown function that is strongly up-regulated upon treatment with isoniazid and ethambutol is the ini-BAC operon. We have reproduced these findings and show that iniBAC genes are also induced in infected host cells, although with higher variability. Next, we set out to elucidate the genetic network that results in iniBAC induction in Mycobacterium marinum. By transposon mutagenesis, we identified that the operon is highly induced by mutations in genes encoding enzymes of the vitamin B12 biosynthesis pathway and the vitamin B12-dependent methylmalonyl-CoA-mutase MutAB. Lipid analysis showed that a mutA::tn mutant has decreased phthiocerol dimycocerosates levels, suggesting a link between iniBAC induction and the production of methyl-branched lipids. Moreover, a similar screen in Mycobacterium bovis BCG identified that phthiocerol dimycocerosate biosynthesis mutants cause the up-regulation of iniBAC genes. Based on these data, we propose that iniBAC is induced in response to mutations that cause defects in the biosynthesis of methyl-branched lipids. The resulting metabolic stress caused by these mutations or caused by ethambutol or isoniazid treatment may be relieved by iniBAC to increase the chance of bacterial survival.
The cell envelope of mycobacteria is a highly unique and complex structure that is functionally equivalent to that of Gram-negative bacteria to protect the bacterial cell. Defects in the integrity or assembly of this cell envelope must be sensed to allow the induction of stress response systems. The promoter that is specifically and most strongly induced upon exposure to ethambutol and isoniazid, first line drugs that affect cell envelope biogenesis, is the iniBAC promoter. In this study, we set out to identify the regulator of the iniBAC operon in Mycobacterium marinum using an unbiased transposon mutagenesis screen in a constitutively iniBAC-expressing mutant background. We obtained multiple mutants in the mce1 locus as well as mutants in an uncharacterized putative transcriptional regulator (MMAR_0612). This latter gene was shown to function as the iniBAC regulator, as overexpression resulted in constitutive iniBAC induction, whereas a knockout mutant was unable to respond to the presence of ethambutol and isoniazid. Experiments with the M. tuberculosis homologue (Rv0339c) showed identical results. RNAseq experiments showed that this regulatory gene was exclusively involved in the regulation of the iniBAC operon. We therefore propose to name this dedicated regulator iniBAC Regulator (IniR). IniR belongs to the family of signal transduction ATPases with numerous domains, including a putative sugar-binding domain. Upon testing different sugars, we identified trehalose as an activator and metabolic cue for iniBAC activation, which could also explain the effect of the mce1 mutations. In conclusion, cell envelope stress in mycobacteria is regulated by IniR in a cascade that includes trehalose.
The cell-envelope of Mycobacterium tuberculosis plays a key role in bacterial virulence and antibiotic resistance. Little is known about the molecular mechanisms of regulation of cell-envelope formation. Here, we elucidate functional and structural properties of RNase AS, which modulates M. tuberculosis cell-envelope properties and strongly impacts bacterial virulence in vivo. The structure of RNase AS reveals a resemblance to RNase T from Escherichia coli, an RNase of the DEDD family involved in RNA maturation. We show that RNase AS acts as a 3'-5'-exoribonuclease that specifically hydrolyzes adenylate-containing RNA sequences. Also, crystal structures of complexes with AMP and UMP reveal the structural basis for the observed enzyme specificity. Notably, RNase AS shows a mechanism of substrate recruitment, based on the recognition of the hydrogen bond donor NH2 group of adenine. Our work opens a field for the design of drugs able to reduce bacterial virulence in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.