In a randomized, placebo-controlled, double-blind study, glatiramer acetate (Copaxone) reduced the relapse rate and slowed accumulation of disability for patients with relapsing - remitting multiple sclerosis. Of the original 251 patients randomized to receive glatiramer acetate or placebo, 208 chose to continue in an open-label study with all patients receiving active drug. The majority of the original double-blind cohort continues to receive glatiramer acetate by daily subcutaneous injection and are evaluated at 6-month intervals and during suspected relapse. The data reported here are from approximately 6 years of organized evaluation, including the double-blind phase of up to 35 months and the open-label phase of over 36 months. Daily subcutaneous injections of 20 mg glatiramer acetate were well tolerated. The mean annual relapse rate of the patients who received glatiramer acetate since randomization and continued into the open-label study was 0.42 (95% confidence interval (CI), CI=0.34 - 0.51). The rate per year has continued to drop and for the sixth year is 0.23. Of the group who have received glatiramer acetate without interruption for 5 or more years, 69.3% were neurologically unchanged or have improved from baseline by at least one step on the Expanded Disability Status Scale (EDSS). Patients who left the open-label phase were surveyed by questionnaire. The majority responded, providing information about their current status and reasons for dropping out. This study demonstrates the sustained efficacy of glatiramer acetate in reducing the relapse rate and in slowing the accumulation of disability in patients with relapsing forms of multiple sclerosis. Multiple Sclerosis (2000) 6 255 - 266
After the placebo-controlled extension of the pivotal US trial of glatiramer acetate for the treatment of relapsing multiple sclerosis ended, 208 participants entered an open-label, long-term treatment protocol Magnetic resonance imaging (MRI) was added to the planned evaluations of these subjects to determine the consequences of long-term treatment on MRI-defined pathology and evaluate its clinical correlates. Of the 147 subjects that remained on long-term follow-up, adequate images were obtained on 135 for quantitative MRI analysis. The initial imaging sessions were performed between June 1998 and January 1999 at 2,447 +/- 61 days (mean +/- standard deviation) after the subject's original randomization. Clinical data from a preplanned clinical visit were matched to MRI within 3 +/- 51 days. At imaging, 66 patients originally randomized to placebo (oPBO) in the pivotal trial had received glatiramer acetate for 1,476 +/- 63 days, and 69 randomized to active treatment with glatiramer acetate (oGA) were on drug for 2,433 +/- 59 days. The number of documented relapses in the 2 years prior to entering the open-label extension was higher in the group originally randomized to placebo (oPBO=1.86 +/- 1.78, oGA=1.03 +/- 1.28; P=0.002). The annualized relapse rate observed during the open-label study was similar for both groups (oPBO=0.2 7, +/- 0.45 oGA=0.28 +/- 0.40), but the reduction in rate from the placebo-controlled phase was greater for those beginning therapy with GA (oPBO reduced by 0.66 +/- 0.71, oGA reduced by 0.23 +/- 0.58; P=0.0002). One or more gadolinium enhancing lesions were found in 27.4% of all patients (number of distinct enhancements=1.16 +/- 2.52, total enhanced tissue volume=97 +/- 26 microl). The risk of having an enhancement was higher in those with relapses during the open-label extension (odds ratio 4.65, 95% confidence interval (CI) 2.0 to 10.7; P=0.001). The odds for finding an enhancement was 2.5 times higher for those patients originally randomized to placebo (CI 1.1 to 5.4; P=0.02) compared to those always on glatiramer acetate. MRI-metrics indicative of chronic pathology, particularly measures of global cerebral tissue loss (atrophy), were uniformly worse for those originally on placebo. These observations enrich our long-term follow up of the clinical consequences of treatment with glatiramer acetate to include its apparent effects on MRI-defined pathology. They show that the effect of glatiramer acetate on enhancements is definite, but modest, consistent with the drug's described mechanisms of action, and that a delay in initiating treatment results in progression of MRI-measured pathology that can be prevented.
Five major genotypes of JC virus (JCV) have been defined based on nucleotide differences in the VP1 gene of the DNA sequence. These types are probably a result of virus evolution in geographically isolated population groups. One of the first genotypes identified, Type 2, was found to represent strains of Asian origin. In order to further define the spectrum within Type 2 strains, the entire 5n1 kb genome of nine urinary strains of JCV was amplified by PCR with one pair of primers. These urine samples were obtained in the USA (California and New Mexico) from three European Americans, three Native Americans, two African Americans and one Hispanic American. The complete genome of an Asian JCV strain (Tokyo-1) isolated from progressive multifocal leukoencephalopathy (PML) brain in
We hold that the intra-blood-brain-barrier (BBB) IgG synthesis (SYN) rate can be quantitated reliably and validly. Although several formulas distinguish patients with multiple sclerosis from normal controls equally well, only the SYN rate formula has been validated in humans using isotopic tracer techniques. Our formula for the IgG SYN rate is reducible to Reiber's formula; therefore, both can be used to quantify the IgG SYN rate in a manner not possible using the IgG index. Although our SYN rate formula has been validated for a modest range of BBB abnormalities (cerebrospinal fluid/serum albumin ratios), there is evidence to suggest that it may be used even in patients having severe BBB damage. We question the acceptance of unique cerebrospinal fluid IgG bands as indisputable evidence of intra-BBB IgG SYN in the presence of a modest to severely damaged BBB. Finally, the utility of quantitation and detection of intra-BBB IgG SYN by standardized methods in a group of asymptomatic, normal individuals compared with a group of patients with clinical definite multiple sclerosis is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.