We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centres. We find that, for the energy (4−30 keV) and dose (5×10 11 −10 13 ions/cm 2 ) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at ≥ 1100 • C. Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving ≈ 10-17 nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centres for high-sensitivity sensing and imaging applications.
Iron is critical for life. Nature capitalizes on the physical attributes of iron biominerals for functional, structural, and sensory applications. Iron biomineralization is well exemplified by the magnetite‐bearing radula of chitons, the hardest known biomineral of any animal. Although magnetism is an integral property of iron biominerals, limited information exists on the magnetic state, structure, and orientation of these nanoscale materials during mineralization. The advent of quantum‐based magnetic microscopy provides a new avenue to probe these biological systems directly, providing detailed magnetic information of the iron oxide structures. Here two complementary quantum magnetic microscopy methods are applied, based on nitrogen‐vacancy centers in diamond, to spatially map the mineral phases ferrihydrite and magnetite in the developing teeth of the chiton Acanthopleura hirtosa. The images reveal previously undiscovered long‐range magnetic order, established at the onset of magnetite mineralization. This is in contrast to electron microscopy studies that show no strong common crystallographic orientation. The implications of these results are important, not just for the insights gained in biomineralization of the target organism, but also for the study of a broad range of iron minerals in the physical and biological sciences.
Magnetic microparticles or "beads" are used in a variety of research applications from cell sorting through to optical force traction microscopy. The magnetic properties of such particles can be tailored for specific applications with the uniformity of individual beads critical to their function. However, the majority of magnetic characterization techniques quantify the magnetic properties from large bead ensembles. Developing new magnetic imaging techniques to evaluate and visualize the magnetic fields from single beads will allow detailed insight into the magnetic uniformity, anisotropy, and alignment of magnetic domains. Here, diamond-based magnetic microscopy is applied to image and characterize individual magnetic beads with varying magnetic and structural properties: ferromagnetic and superparamagnetic/paramagnetic, shell (coated with magnetic material), and solid (magnetic material dispersed in matrix). The single-bead magnetic images identify irregularities in the magnetic profiles from individual bead populations. Magnetic simulations account for the varying magnetic profiles and allow to infer the magnetization of individual beads. Additionally, this work shows that the imaging technique can be adapted to achieve illumination-free tracking of magnetic beads, opening the possibility of tracking cell movements and mechanics in photosensitive contexts. Magnetic Materials www.advancedsciencenews.com
The ability of pigeons to sense geomagnetic fields has been conclusively established despite a notable lack of determination of the underlying biophysical mechanisms. Quasi-spherical iron organelles previously termed “cuticulosomes” in the cochlea of pigeons have potential relevance to magnetoreception due to their location and iron composition; however, data regarding the magnetic susceptibility of these structures are currently limited. Here quantum magnetic imaging techniques are applied to characterize the magnetic properties of individual iron cuticulosomes in situ. The stray magnetic fields emanating from cuticulosomes are mapped and compared to a detailed analytical model to provide an estimate of the magnetic susceptibility of the individual particles. The images reveal the presence of superparamagnetic and ferrimagnetic domains within individual cuticulosomes and magnetic susceptibilities within the range 0.029 to 0.22. These results provide insights into the elusive physiological roles of cuticulosomes. The susceptibilities measured are not consistent with a torque-based model of magnetoreception, placing iron storage and stereocilia stabilization as the two leading putative cuticulosome functions. This work establishes quantum magnetic imaging as an important tool to complement the existing array of techniques used to screen for potential magnetic particle–based magnetoreceptor candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.