1] Recent developments in tomographic imaging allow the use of GPS satellite data to image the Earth's ionosphere. Ground-based GPS receivers monitor the Earth's ionosphere continuously, and a comprehensive database of ionospheric measurements suitable for tomographic processing now exists. The tomographic inversion of these GPS data in a three-dimensional time-dependent inversion algorithm can reveal the spatial and temporal distribution of ionospheric electron density. This new technique is unique for studying ionospheric physics because it gives a time-continuous near-global view of the ionosphere. The tomographic algorithms have been under continuous development for several years and are now yielding new geophysical results. Two fundamentally different algorithms (Multi-instrument Data Analysis System and Ionospheric Data Assimilation Three-Dimensional) are presented. They show the ionospheric impact of two major space weather events during the recent solar maximum. Results obtained from these two algorithms are similar, which provides additional confidence in the accuracy of the images.
[1] A rapid signal-fading event produced by diffractive scintillations was observed around 0123 UT on 8 November 2004 by three closely sited (less than 250 m apart) GPS scintillation receivers in northern Norway. The entire duration of the event was about 10 s and was recorded by all three receivers. Intense, short duration events such as these are not clearly observable in the 1-min scintillation index (S4) because they do not necessarily last for the entire minute. In spite of their short duration they can cause a receiver to lose lock because of their intensity. The geomagnetic conditions were disturbed at this time with the interplanetary magnetic field southward for a period of several hours. Magnetometers from the IMAGE network in Scandinavia showed evidence of a 2000 nT substorm. The GPS measurements are compared with all-sky camera (ASC) data to show that the signal fades can be attributed to the GPS ray paths crossing electron density structures associated with the aurora. The ASC images reveal moving auroral structures at the same time as the GPS signals show movement of the ionospheric regions causing fading. The results indicate that at high latitudes low-elevation GPS signals can suffer sudden fading due to E-region auroral events. This is the first time that a direct connection has been established between the loss of lock on a GPS receiver and diffractive fading caused by auroral precipitation.
.[1] Two different analysis techniques for mapping ionospheric total electron content (TEC) are compared. The first technique approximates the ionospheric electron concentration as a thin shell at a fixed altitude. In this case, slant TEC observations are converted into vertical TEC values using a mapping function and interpolated across a grid. Other slant TEC values are then calculated from the vertical TEC grid using another mapping function. The second technique applies an advanced tomographic algorithm to invert the slant TEC observations into a time-evolving three-dimensional grid of electron concentration. Either slant or vertical TEC can then be extracted from the electron concentration images without the need for a mapping function. Results based on both simulated and experimental data are presented. The results indicate that the inversion offers improvements over a thin shell in the mapping of TEC at middle latitudes.
Small-scale irregularities in the background electron density of the ionosphere can cause rapid fluctuations in the amplitude and phase of radio signals passing through it. These rapid fluctuations are known as scintillation and can cause a Global Positioning System (GPS) receiver to lose lock on a signal. This could compromise the integrity of a safety of life system based on GPS, operating in auroral regions. In this paper, the relationship between the loss of lock on GPS signals and ionospheric scintillation in auroral regions is explored. The period from 8 to 14 November 2004 is selected for this study, as it includes both geomagnetically quiet and disturbed conditions. Phase and amplitude scintillation are measured by GPS receivers located at three sites in Northern Scandinavia, and correlated with losses of signal lock in receivers at varying distances from the scintillation receivers. Local multi-path effects are screened out by rejection of lowelevation data from the analysis. The results indicate that losses of lock are more closely related to rapid fluctuations in the phase rather than the amplitude of the received signal. This supports the idea, suggested by Humphreys et al. (2005) (performance of GPS carrier tracking loops during ionospheric scintillations. Proceedings Internationsl Ionospheric Effects Symposium 3-5 May 2005), that a wide loop bandwidth may be preferred for receivers operating at auroral latitudes. Evidence from the Imaging Riometer for Ionospheric Studies (IRIS) appears to suggest that, for this particular storm, precipitation of particles in the D/E regions may be the mechanism that drives the rapid phase fluctuations in the signal.
Abstract. Images of the winter-time ionosphere over Northern Scandinavia in January 2002 from two independent experimental techniques are presented. In the first case, observations of differential phase delay from the GPS satellites are used in an inversion algorithm, called MIDAS (Multi Instrument Data Analysis Software), to estimate the spatial distribution of electron concentration. The second approach uses the European Incoherent Scatter (EISCAT) radar situated near Tromsø in northern Norway to gather independent data for comparison with the MIDAS images. The EISCAT data are plotted as "fan plots" that show electron concentration as a function of latitude and range, whilst the MIDAS results are presented in the form of latitude-altitude crosssections at the locations and times coincident with the radar scans. Wide-area maps of Total Electron Content (TEC) are also shown for the post-noon period. The position and time evolution of the trough seen in the MIDAS images is confirmed by four scans of the EISCAT radar in the afternoon period. The results demonstrate that GPS imaging is capable of locating the main trough, and confirm the potential of MIDAS imaging as a tool for routine monitoring of the ionosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.