Several members of the phthalate ester family have antiandrogenic properties, yet little is known about how exposure to these ubiquitous environmental contaminants early in development may affect sexual development. We conducted experiments to determine effects of in utero and lactational exposure to the most prevalent phthalate ester, di(2-ethylhexyl) phthalate (DEHP), on male reproductive system development and sexual behavior. Sprague-Dawley rats were dosed with corn oil or DEHP (0, 375, 750, or 1,500 mg/kg/day, per os) from gestation day 3 through postnatal day (PND) 21. Dose-related effects on male offspring included reduced anogenital distance, areola and nipple retention, undescended testes, and permanently incomplete preputial separation. Testis, epididymis, glans penis, ventral prostate, dorsolateral prostate, anterior prostate, and seminal vesicle weights were reduced at PND 21, 63, and/or 105-112. Additional dose-related effects included a high incidence of anterior prostate agenesis, a lower incidence of partial or complete ventral prostate agenesis, occasional dorsolateral prostate and seminal vesicle agenesis, reduced sperm counts, and testicular, epididymal, and penile malformations. Many DEHP-exposed males were sexually inactive in the presence of receptive control females, but sexual inactivity did not correlate with abnormal male reproductive organs. These results suggest that in utero and lactational DEHP exposure also inhibited sexually dimorphic central nervous system development. No major abnormalities were found in any of eight control litters, but DEHP caused severe male reproductive system toxicity in five of eight litters at 375 mg/kg/day, seven of eight litters at 750 mg/kg/day, and five of five litters at 1,500 mg/kg/day. These results demonstrate that the male reproductive system is far more sensitive to DEHP early in development than when animals are exposed as juveniles or adults. The effects of DEHP on male reproductive organs and sexual behaviors and the lack of significant effects on time to vaginal opening and first estrus in their littermates demonstrate that DEHP (and/or its metabolites) affects development of the male reproductive system primarily by acting as an antiandrogen. The pattern of effects of in utero and lactational DEHP exposure differed from patterns caused by other phthalate esters, and the preponderance of anterior prostate agenesis appears to be unique among all chemicals. These results suggest that DEHP acts partly by mechanisms distinct from those of other antiandrogens.
The Hedgehog (Hh) signaling pathway is an essential regulator of embryonic development and appears to play important roles in postnatal repair and cancer progression and metastasis. The teratogenic Veratrum alkaloid cyclopamine is a potent Hh antagonist and is used experimentally both in vitro and in vivo to investigate the role of Hh signaling in diverse biological processes. Here, we set out to establish an administration regimen for cyclopamine-induced teratogenicity in the mouse. The dysmorphogenic concentration of cyclopamine was determined in vitro via mouse whole-embryo culture assays to be 2.0 microM. We administered cyclopamine to female C57BL/6J mice at varied doses by oral gavage, ip injection, or osmotic pump infusion and assessed toxicity and pharmacokinetic (PK) models. Bolus administration was limited by toxicity and rapid clearance. In vivo cyclopamine infusion at 160 mg/kg/day yielded a dam serum steady-state concentration of approximately 2 microM with a corresponding amniotic fluid concentration of approximately 1.5 microM. Gross facial defects were induced in 30% of cyclopamine-exposed litters, with affected embryos exhibiting cleft lip and palate. This is the first report describing the PKs and teratogenic potential of cyclopamine in the mouse and demonstrates that transient Hh signaling inhibition induces facial clefting anomalies in the mouse that mimic common human birth defects.
SUMMARY Serum cardiac enzyme levels (CK, LDH, SCOT) were estimated and the ECG recorded for 4 days following admission of 288 patients (Group I) to a stroke intensive care unit. Sixty-four of these patients, subsequently found not to have strokes, served as controls. Mean serum levels of all 3 cardiac enzymes were elevated in 8% of the 224 patients with stroke. The mean serum enzyme levels in patients with transient ischemic attacks (TIA) did not differ from controls.In a second group of 230 patients with stroke (Group II) serum CK levels were measured and the isoenzymes were fractionated to determine the tissue source of the enzymes. One hundred and one patients had raised total CK values and 25 of these (11%) had raised CK-MB (heart) iso-enzyme, the remainder having CK-MM (skeletal muscle) fraction. No serum CK-BB (brain) iso-enzyme was detected in any patient. Patients with positive serum levels of CK-MB had more evidence of acute myocardial ischemia on ECG (p < 0.05), and more cardiac arrhythmias (p < 0.001) than those with normal CK levels. Scattered areas of myocytolysis were found in the myocardium at autopsy in one patient.The acute rise in serum cardiac enzymes which we have recorded in the initial stages of stroke suggest that acute myocardial involvement is a commoner complication than is generally recognized. Also, since the CK-MB rises were modest and progressive, it is more likely that this acute myocardial dysfunction is a consequence, rather than a cause, of the acute cerebrovascular lesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.