Controversy exists over ecological risks in classical biological control. We reviewed 10 projects with quantitative data on nontarget effects. Ten patterns emerged: (a) Relatives of the pest are most likely to be attacked; (b) host-specificity testing defines physiological host range, but not ecological range; (c) prediction of ecological consequences requires population data; (d) level of impact varied, often in relation to environmental conditions; (e) information on magnitude of nontarget impact is sparse; (f) attack on rare native species can accelerate their decline; (g) nontarget effects can be indirect; (h) agents disperse from agroecosystems; (i) whole assemblages of species can be perturbed; and (j) no evidence on adaptation is available in these cases. The review leads to six recommendations: Avoid using generalists or adventive species; expand host-specificity testing; incorporate more ecological information; consider ecological risk in target selection; prioritize agents; and pursue genetic data on adaptation. We conclude that retrospective analyses suggest clear ways to further increase future safety of biocontrol.
Data on field host use of 112 insects, 3 fungi, 1 mite, and 1 nematode established for biological control of weeds in Hawaii, the continental United States, and the Caribbean indicate that the risk to native flora can be judged reliably before introduction. Virtually all risk is borne by native plant species that are closely related to target weeds. Fifteen species of insects introduced for biological control use 41 native plant species; 36 of which are congeneric with target weeds, while 4 others belong to two closely allied genera. Only 1 of 117 established biological organisms uses a native plant unrelated to the target weed. Thus the elements of protection for the native flora are the selection of weed targets that have few or no native congeners and the introduction of biological control organisms with suitably narrow diets.
The Florida Everglades have been invaded by an exotic weed fern, Lygodium microphyllum. Across its native distribution in the Old World tropics from Africa to Australasia it was found to have multiple location-specific haplotypes. Within this distribution, the climbing fern is attacked by a phytophagous mite, Floracarus perrepae, also with multiple haplotypes. The genetic relationship between mite and fern haplotypes was matched by an overarching geographical relationship between the two. Further, mites that occur in the same location as a particular fern haplotype were better able to utilize the fern than mites from more distant locations. From a biological control context, we are able to show that the weed fern in the Everglades most likely originated in northern Queensland, Australia/Papua New Guinea and that the mite from northern Queensland offers the greatest prospect for control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.