Overadjustment is defined inconsistently. This term is meant to describe control (eg, by regression adjustment, stratification, or restriction) for a variable that either increases net bias or decreases precision without affecting bias. We define overadjustment bias as control for an intermediate variable (or a descending proxy for an intermediate variable) on a causal path from exposure to outcome. We define unnecessary adjustment as control for a variable that does not affect bias of the causal relation between exposure and outcome but may affect its precision. We use causal diagrams and an empirical example (the effect of maternal smoking on neonatal mortality) to illustrate and clarify the definition of overadjustment bias, and to distinguish overadjustment bias from unnecessary adjustment. Using simulations, we quantify the amount of bias associated with overadjustment. Moreover, we show that this bias is based on a different causal structure from confounding or selection biases. Overadjustment bias is not a finite sample bias, while inefficiencies due to control for unnecessary variables are a function of sample size.
ABSTRACT. Background. Existing fetal growth references all suffer from 1 or more major methodologic problems, including errors in reported gestational age, biologically implausible birth weight for gestational age, insufficient sample sizes at low gestational age, singlehospital or other non-population-based samples, and inadequate statistical modeling techniques.Methods. We used the newly developed Canadian national linked file of singleton births and infant deaths for births between 1994 and 1996, for which gestational age is largely based on early ultrasound estimates. Assuming a normal distribution for birth weight at each gestational age, we used the expectation-maximization algorithm to exclude infants with gestational ages that were more consistent with 40-week births than with the observed gestational age. Distributions of birth weight at the corrected gestational ages were then statistically smoothed.Results. The resulting male and female curves provide smooth and biologically plausible means, standard deviations, and percentile cutoffs for defining small-and large-for-gestational-age births. Large-for-gestational age cutoffs (90th percentile) at low gestational ages are considerably lower than those of existing references, whereas small-for-gestational-age cutoffs (10th percentile) postterm are higher.
BackgroundThe objective of most biomedical research is to determine an unbiased estimate of effect for an exposure on an outcome, i.e. to make causal inferences about the exposure. Recent developments in epidemiology have shown that traditional methods of identifying confounding and adjusting for confounding may be inadequate.DiscussionThe traditional methods of adjusting for "potential confounders" may introduce conditional associations and bias rather than minimize it. Although previous published articles have discussed the role of the causal directed acyclic graph approach (DAGs) with respect to confounding, many clinical problems require complicated DAGs and therefore investigators may continue to use traditional practices because they do not have the tools necessary to properly use the DAG approach. The purpose of this manuscript is to demonstrate a simple 6-step approach to the use of DAGs, and also to explain why the method works from a conceptual point of view.SummaryUsing the simple 6-step DAG approach to confounding and selection bias discussed is likely to reduce the degree of bias for the effect estimate in the chosen statistical model.
Many analyses of observational data are attempts to emulate a target trial. The emulation of the target trial may fail when researchers deviate from simple principles that guide the design and analysis of randomized experiments. We review a framework to describe and prevent biases, including immortal time bias, that result from a failure to align start of follow-up, specification of eligibility, and treatment assignment. We review some analytic approaches to avoid these problems in comparative effectiveness or safety research.
That conditioning on a common effect of exposure and outcome may cause selection, or collider-stratification, bias is not intuitive. We provide two hypothetical examples to convey concepts underlying bias due to conditioning on a collider. In the first example, fever is a common effect of influenza and consumption of a tainted egg-salad sandwich. In the second example, case-status is a common effect of a genotype and an environmental factor. In both examples, conditioning on the common effect imparts an association between two otherwise independent variables; we call this selection bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.