Transport of long-chain fatty acids across the cell membrane has long been thought to occur by passive diffusion. However, in recent years there has been a fundamental shift in understanding, and it is now generally recognized that fatty acids cross the cell membrane via a protein-mediated mechanism. Membrane-associated fatty acid-binding proteins ('fatty acid transporters') not only facilitate but also regulate cellular fatty acid uptake, for instance through their inducible rapid (and reversible) translocation from intracellular storage pools to the cell membrane. A number of fatty acid transporters have been identified, including CD36, plasma membrane-associated fatty acid-binding protein (FABP(pm)), and a family of fatty acid transport proteins (FATP1-6). Fatty acid transporters are also implicated in metabolic disease, such as insulin resistance and type-2 diabetes. In this report we briefly review current understanding of the mechanism of transmembrane fatty acid transport, and the function of fatty acid transporters in healthy cardiac and skeletal muscle, and in insulin resistance/type-2 diabetes. Fatty acid transporters hold promise as a future target to rectify lipid fluxes in the body and regain metabolic homeostasis.
Aims/hypothesisUpon stimulation of insulin signalling or contraction-induced AMP-activated protein kinase (AMPK) activation, the glucose transporter GLUT4 and the long-chain fatty acid (LCFA) transporter CD36 similarly translocate from intracellular compartments to the plasma membrane of cardiomyocytes to increase uptake of glucose and LCFA, respectively. This similarity in regulation of GLUT4 traffic and CD36 traffic suggests that the same families of trafficking proteins, including vesicle-associated membrane proteins (VAMPs), are involved in both processes. While several VAMPs have been implicated in GLUT4 traffic, nothing is known about the putative function of VAMPs in CD36 traffic. Therefore, we compared the involvement of the myocardially produced VAMP isoforms in insulin- or contraction-induced GLUT4 and CD36 translocation.MethodsFive VAMP isoforms were silenced in HL-1 cardiomyocytes. The cells were treated with insulin or the contraction-like AMPK activator oligomycin or were electrically stimulated to contract. Subsequently, GLUT4 and CD36 translocation as well as substrate uptake were measured.ResultsThree VAMPs were demonstrated to be necessary for both GLUT4 and CD36 translocation, either specifically in insulin-treated cells (VAMP2, VAMP5) or in oligomycin/contraction-treated cells (VAMP3). In addition, there are VAMPs specifically involved in either GLUT4 traffic (VAMP7 mediates basal GLUT4 retention) or CD36 traffic (VAMP4 mediates insulin- and oligomycin/contraction-induced CD36 translocation).Conclusions/interpretationThe involvement of distinct VAMP isoforms in both GLUT4 and CD36 translocation indicates that CD36 translocation, just like GLUT4 translocation, is a vesicle-mediated process dependent on soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. The ability of other VAMPs to discriminate between GLUT4 and CD36 translocation allows the notion that myocardial substrate preference can be modulated by these VAMPs.
Circulating long-chain fatty acids (LCFA) and glucose are the main sources for energy production in the heart. In the healthy heart the ratio of glucose and LCFA oxidation is sensitively balanced and chronic alterations in this substrate mix are closely associated with cardiac dysfunction. While it has been accepted for several years that cardiac glucose uptake is mediated by facilitated transport, i.e. by means of the glucose transport proteins GLUT1 and GLUT4, only in the last few years it has become clear that proteins with high-affinity binding sites to LCFA, referred to as LCFA transporters, are responsible for bulk LCFA uptake. Similar to the GLUTs, the LCFA transporters CD36 and FABP(pm) can be recruited from an intracellular storage compartment to the sarcolemma to increase the rate of substrate uptake. Permanent relocation of LCFA transporters, mainly CD36, from intracellular stores to the sarcolemma is accompanied by accumulation of lipids and lipid metabolites in the heart. As a consequence, insulin signalling and glucose utilization are impaired, leading to decreased contractile activity of the heart. These observations underline the particular role and interplay of substrate carriers for glucose and LCFA in modulating cardiac metabolism, and the development of heart failure. The signalling and trafficking pathways and subcellular machinery regulating translocation of glucose and LCFA transporters are beginning to be unravelled. More knowledge on substrate transporter recycling, especially the similarities and differences between glucose and LCFA transporters, is expected to enable novel therapies aimed at changing the subcellular distribution of glucose and LCFA transporters, thereby manipulating the substrate preference of the diseased heart to help restore cardiac function.
ObjectiveIncreased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity.MethodsPlasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity.ResultsSubjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content.ConclusionsOur results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.