Recently, there has been much interest in a new kind of ``unspeakable'' quantum information that stands to regular quantum information in the same way that a direction in space or a moment in time stands to a classical bit string: the former can only be encoded using particular degrees of freedom while the latter are indifferent to the physical nature of the information carriers. The problem of correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are important instances, is an example of a task that requires the exchange of unspeakable information and for which it is interesting to determine the fundamental quantum limit of efficiency. There have also been many investigations into the information theory that is appropriate for parties that lack reference frames or that lack correlation between their reference frames, restrictions that result in global and local superselection rules. In the presence of these, quantum unspeakable information becomes a new kind of resource that can be manipulated, depleted, quantified, etcetera. Methods have also been developed to contend with these restrictions using relational encodings, particularly in the context of computation, cryptography, communication, and the manipulation of entanglement. This article reviews the role of reference frames and superselection rules in the theory of quantum information processing.Comment: 55 pages, published versio
The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of contextuality is introduced which generalizes the standard notion in three ways: (1) it applies to arbitrary operational theories rather than just quantum theory, (2) it applies to arbitrary experimental procedures rather than just sharp measurements, and (3) it applies to a broad class of ontological models of quantum theory rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models, each based on an assumption of noncontextuality for a different sort of experimental procedure; one for preparation procedures, another for unsharp measurement procedures (that is, measurement procedures associated with positive-operator valued measures), and a third for transformation procedures. All three proofs apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality.
The ideas of thermodynamics have proved fruitful in the setting of quantum information theory, in particular the notion that when the allowed transformations of a system are restricted, certain states of the system become useful resources with which one can prepare previously inaccessible states. The theory of entanglement is perhaps the best-known and most well-understood resource theory in this sense. Here, we return to the basic questions of thermodynamics using the formalism of resource theories developed in quantum information theory and show that the free energy of thermodynamics emerges naturally from the resource theory of energy-preserving transformations. Specifically, the free energy quantifies the amount of useful work which can be extracted from asymptotically many copies of a quantum system when using only reversible energy-preserving transformations and a thermal bath at fixed temperature. The free energy also quantifies the rate at which resource states can be reversibly interconverted asymptotically, provided that a sublinear amount of coherent superposition over energy levels is available, a situation analogous to the sublinear amount of classical communication required for entanglement dilution. Quantum resource theories are specified by a restriction on the quantum operations (state preparations, measurements, and transformations) that can be implemented by one or more parties. This singles out a set of states which can be prepared under the restricted operations. If the parties facing the restriction acquire a quantum state outside the restricted set of states, then they can use this state to implement measurements and transformations that are outside the class of allowed operations, consuming the state in the process. Thus, such states are useful resources.A few prominent examples serve to illustrate the idea: if two or more parties are restricted to communicating classically and implementing local quantum operations, then entangled states become a resource [1]; if a party is restricted to quantum operations that have a particular symmetry, then states that break this symmetry become a resource [2][3][4]; if a party is restricted to preparing states that are completely mixed and performing unitary operations, then any state that is not completely mixed, i.e., any state that has some purity, becomes a resource [5].In this Letter, we develop the quantum resource theory of states that are T athermal, i.e., not thermal at temperature T. This provides a useful new formulation of equilibrium and nonequilibrium thermodynamics for finite-dimensional quantum systems, and allows us to apply new mathematical tools to the subject. The restricted class of operations which defines our resource theory includes only those that can be achieved through energy-conserving unitaries and the preparation of any ancillary system in a thermal state at temperature T, as first studied by Janzing et al. [6] in the context of Landauer's principle. Here, the ancillary systems can have an arbitrary Hilbert space and an a...
We present a toy theory that is based on a simple principle: the number of questions about the physical state of a system that are answered must always be equal to the number that are unanswered in a state of maximal knowledge. A wide variety of quantum phenomena are found to have analogues within this toy theory. Such phenomena include: the noncommutativity of measurements, interference, the multiplicity of convex decompositions of a mixed state, the impossibility of discriminating nonorthogonal states, the impossibility of a universal state inverter, the distinction between bi-partite and tri-partite entanglement, the monogamy of pure entanglement, no cloning, no broadcasting, remote steering, teleportation, dense coding, mutually unbiased bases, and many others. The diversity and quality of these analogies is taken as evidence for the view that quantum states are states of incomplete knowledge rather than states of reality. A consideration of the phenomena that the toy theory fails to reproduce, notably, violations of Bell inequalities and the existence of a Kochen-Specker theorem, provides clues for how to proceed with this research program.
Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state has the status of something real, the failure of locality can be established through an argument considerably more straightforward than Bell's theorem. The historical significance of this result becomes evident when one recognizes that the same reasoning is present in Einstein's preferred argument for incompleteness, which dates back to 1935. This fact suggests that Einstein was seeking not just any completion of quantum theory, but one wherein quantum states are solely representative of our knowledge. Our hypothesis is supported by an analysis of Einstein's attempts to clarify his views on quantum theory and the circumstance of his otherwise puzzling abandonment of an even simpler argument for incompleteness from 1927.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.