In the last decade atmospheric pressure plasma jets (APPJs) have been routinely employed for surface processing of polymers due to their capability of generating very reactive chemistry at near-ambient temperature conditions. Usually, the plasma jet modification effect spans over a limited area (typically a few cm²), therefore, for industrial applications, where treatment of large and irregular surfaces is needed, jet and/or sample manipulations are required. More specifically, for treating hollow objects, like pipes and containers, the plasma jet must be introduced inside of them. In this case, a normal jet incidence to treated surface is difficult if not impossible to maintain. In this paper, a plasma jet produced at the end of a long flexible plastic tube was used to treat polyethylene terephthalate (PET) samples with different incidence angles and using different process parameters. Decreasing the angle formed between the plasma plume and the substrate leads to increase in the modified area as detected by surface wettability analysis. The same trend was confirmed by the distribution of reactive oxygen species (ROS), expanding on starch-iodine-agar plates, where a greater area was covered when the APPJ was tilted. Additionally, UV-VUV irradiation profiles obtained from the plasma jet spreading on the surface confirms such behavior.
In this study, the antimicrobial effect of plasma‐processed air (PPA) generated by a microwave‐induced nonthermal plasma was investigated for preharvest utilization using three crop species: Barley, rape, and lupine. Bacillus atrophaeus spores were chosen as a model, inoculated onto seeds, and subsequently treated with PPA at two different flow rates, different filling regimes, and gas exposure times. PPA treatment was efficient in reducing viable spores of B. atrophaeus, reaching sporicidal effects in all species at certain parameter combinations. Maximum germination of seeds was strongly reduced in barley and rape seeds at some parameter combination, whereas it had a modest effect on lupine seeds. Seed hydrophilicity was not altered. Overall, PPA investigated in this study proved suitable for preharvest applications.
Plasma-treated water (PTW) possess anti-microbial potential against Pseudomonas fluorescence, which is observable for both suspended cells and cells organized in biofilms. Against that background, the chemical composition of PTW tends to focus. Various analytical techniques have been applied for analyses, which reveal various traceable reactive oxygen and nitrogen compounds (RONS). Based on these findings, it is our aim to generate a PTW analog (anPTW), which has been compared in its anti-microbial efficiency with freshly generated PTW. Additionally, a solution of every traceable compound of PTW has been mixed according to their PTW concentration. As references, we treated suspended cells and mature biofilms of P. fluorescence with PTW that originates from a microwave-driven plasma source. The anti-microbial efficiency of all solutions has been tested based on a combination of a proliferation, an XTT, and a live–dead assay. The outcomes of the test proved an anti-microbial power of PTW that suggests more active ingredients than the traceable compounds HNO3, HNO2, and H2O2 or the combined mixture of the analog.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. Allen Press and Society for Range Management are collaborating with JSTOR to digitize, preserve and extend access to Journal of Range Management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.