The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental setups. Here, we build on our Cov-MS effort using LC−MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The Cov 2 MS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix. A strong positive correlation was observed with qPCR detection beyond a quantification cycle of 30−31, the level where no live virus can be cultured. The automatable sample preparation and reduced LC dependency allow analysis of up to 500 samples per day per instrument. Importantly, peptide enrichment allows detection of the N protein in pooled samples without sensitivity loss. Easily multiplexed, we detect variants and propose targets for Influenza A and B detection. Thus, the Cov 2 MS assay can be adapted to test for many different pathogens in pooled samples, providing longitudinal epidemiological monitoring of large numbers of pathogens within a population as an early warning system.
Objectives
During 2020, the UK’s Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity.
Methods
Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study.
Results
Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7–39.1) demonstrated diagnostic sensitivity of 92.4% (87.4–95.5), specificity of 97.4% (94.0–98.9) and near total concordance with RT-qPCR (Cohen’s Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1–99.3), specificity 97.4% (94.0–98.9) and Cohen’s Kappa 0.95.
Conclusions
This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.