† The COVID19 pandemic is causing an unprecedented public health crisis impacting healthcare systems, healthcare workers, and communities. The COVID-19 Pandemic Health System REsilience PROGRAM (REPROGRAM) consortium is an international not-for-profit think-tank for global pandemic preparedness and action Specialty section: This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology
Multiple sclerosis is a chronic inflammatory disease characterized by perivenous inflammation and focal destruction of myelin. Many attempts have been undertaken previously to create animal models of chronic inflammatory demyelinating diseases through autoimmunity or virus infection. Recently, however, a new model of myelin oligodendrocyte glycoprotein (MOG) induced autoimmune encephalomyelitis became available, which, in a very standardized and predictable way, leads to chronic (relapsing or progressive) disease and widespread CNS demyelination. In the present study we actively induced MOG-experimental autoimmune encephalomyelitis (EAE) in different inbred rat strains using different immunization protocols. The pathology found in our models closely reflects the spectrum of multiple sclerosis (MS) pathology: Classical MS as well as variants such as optic neuritis, Devic's disease and Marburg's type of acute MS are mimicked in rats immunized with MOG antigen. Furthermore we demonstrate, that by using the proper strain/sensitization regime, subforms of MS such as for instance neuromyelitis optica can be reproducibly induced. Our study further supports the notion, that incidence and expression of the disease in this model, alike the situation in multiple sclerosis, is determined by genetic and environmental factors.
Recent magnetic resonance (MR) studies of multiple sclerosis lesions indicate that axonal injury is a major correlate of permanent clinical deficit. In the present study we systematically quantified acute axonal injury, defined by immunoreactivity for beta-amyloid-precursor-protein in dystrophic neurites, in the central nervous system of 22 multiple sclerosis patients and 18 rats with myelin-oligodendrocyte glycoprotein (MOG)-induced chronic autoimmune encephalomyelitis (EAE). The highest incidence of acute axonal injury was found during active demyelination, which was associated with axonal damage in periplaque and in the normal appearing white matter of actively demyelinating cases. In addition, low but significant axonal injury was also observed in inactive demyelinated plaques. In contrast, no significant axonal damage was found in remyelinated shadow plaques. The patterns of axonal pathology in chronic active EAE were qualitatively and quantitatively similar to those found in multiple sclerosis. Our studies confirm previous observations of axonal destruction in multiple sclerosis lesions during active demyelination, but also indicate that ongoing axonal damage in inactive lesions may significantly contribute to the clinical progression of the disease. The results further emphasize that MOG-induced EAE may serve as a suitable model for testing axon-protective therapies in inflammatory demyelinating conditions.
Experimental autoimmune encephalomyelitis (EAE) induced in the rat by active immunization with myelin-oligodendrocyte-glycoprotein (MOG) is mediated by synergy between MOG-specific T cells and demyelinating MOGspecific antibody responses. The resulting disease is chronic and displays demyelinating central nervous system (CNS) pathology that closely resembles multiple sclerosis. We analyzed major histocompatibility complex (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.