The photoincorporation of puromycin into Escherichia coli ribosomes has been studied in detail. Incorporation into protein L23 as a function of puromycin concentration follows a simple saturation curve and is specifically blocked by structural and functional analogues of puromycin, thus demonstrating that such incorporation proceeds via an affinity labeling process. Incorporation into L23 becomes more specific as the light fluence is reduced, indicating that such incorporation takes place from a native rather than light-denatured puromycin site. L23 remains the major labeled protein using ribosomes prepared by several procedures, suggesting the conservative nature of the site. In addition evidence is presented for affinity labeling of S14 and of a site in the RNA fraction of the 50S particle. Specific incorporation appears to proceed with an anomalously high quantum yield. The detailed photochemical mechanism is not understood, although 8-alkylation of purine moiety has been excluded. Incorporation is largely inhibited in the presence of thiol reagents.
Vitamin D3 derivatives and retinoids can induce cell cycle arrest, differentiation and cell death in many cell lines. These compounds can act cooperatively in some of their functions and may be of potential use either individually or in combination in the treatment of breast cancer. The effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), all-trans retinoic acid (ATRA) and several analogues were evaluated on malignant phenotypic traits of breast cancer cell lines MCF-7, T-47D and MDA-MB-231. Both 1,25(OH)2D3 and ATRA caused a decrease in anchorage independent colony formation in MCF-7 and T-47D cells in a dose-dependent manner. The effects of 1,25(OH)2D3 10(-10) and 10(-9) M were synergistic with ATRA 10(-8) M in T-47D cells but were antagonistic in both MCF-7 and in T-47D cells at most concentrations. Both 1,25(OH)2D3 and ATRA individually induced an accumulation of MCF-7 cells in the G1 phase of the cell cycle and an associated increase in p21WAFI/CiP1, p27KiP1 and a dephosphorylation of Rb but the effects were not additive. Both compounds inhibited the invasive capacity of MDA-MB-231 cells. 1,25(OH)2D3 but not ATRA caused an increase in E-cadherin levels in MDA-MB-231 cells. These two functions were not additive. The compounds 1,25(OH)2D3, a noncalcemic analogue 1,25(OH)2-16-ene-23-yne-D3, ATRA, AGN195183, an RARalpha-specific agonist, and AGN190168 (tazarotene), an RARbeta/gamma-selective agonist, induced differentiation as determined by measurements of lipid droplet formation. The individual effects of 1,25(OH)2-16-ene-23-yne-D3 combined with ATRA or with tazarotene at 10(-9) M each were additive in MCF-7 and MDA-MB-231 cells on lipid formation. The data demonstrate that both 1,25(OH)2D3, ATRA, and selected analogues induce a more differentiated phenotype in breast cancer cells with additive effects that are function- and cell-specific.
Interactions with the bone marrow stroma regulate dormancy and survival of breast cancer micrometastases. In an in vitro model of dormancy in the bone marrow, we previously demonstrated that estrogen-dependent breast cancer cells are partially re-differentiated by FGF-2, re-express integrin α5β1 lost with malignant transformation and acquire an activated PI3K/Akt pathway. Ligation of integrin α5β1 by fibronectin and activation of the PI3K pathway both contribute to survival of these dormant cells. Here, we investigated mechanisms responsible for the dormant phenotype. Experiments demonstrate that integrin α5β1 controls de novo cytoskeletal rearrangements, cell spreading, focal adhesion kinase rearrangement to the cell perimeter and recruitment of a RhoA GAP known as GRAF. This results in the inactivation of RhoA, an effect which is necessary for the stabilization of cortical actin. Experiments also demonstrate that activation of the PI3K pathway by FGF-2 is independent of integrin α5β1 and is also required for cortical actin reorganization, GRAF membrane relocalization and RhoA inactivation. These data suggest that GRAF-mediated RhoA inactivation and consequent phenotypic changes of dormancy depend on dual signaling by FGF-2-initiated PI3K activation and through ligation of integrin α5β1 by fibronectin.
The data suggest this is a well tolerated regimen with modest response rates but with time to progression and survival rates similar to those reported for paclitaxel alone and relatively high rates of stable disease in this sample of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.