Automatic bird species recognition method using their voices is presented in this paper. The selected bird species have been detected by hidden Markov models (HMM) classifier using Mel-frequency cepstral coefficients (MFCC). In order to support recognition process, analysed signals have been appropriately filtered before classification in the so called prefiltration process. The prefiltration strategy assumed using n-th order IIR Butterworth filter bank. Each filter from the filter bank was applied for band pass filtration in the bird species specific and signal type band. Increase of recognition accuracy has been observed in case of prefiltration with properly chosen filter order. Experiments have been carried out on the set of bird voices containing 30 bird species, one of which is endangered with extinction.
The superiority of HFCC features over those of MFCC was demonstrated. Results obtained by DTW methods, mainly by modified phoneme-based DTW classifier, were slightly better in comparison with the HMM classifier. Results obtained for the detection of substitution in pairs (for the correct phonetic charactors please see online article) are very promising. The methods developed for these cases can be integrated into computer systems for speech therapy. For substitutions in pairs (for the correct phonetic charactors please see online article) further research is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.