Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 M w 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals 45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.
Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0 +3.5 /-2.5 m fault offsets with a newly developed infrared-stimulated luminescence method show that the fault was slipping at >14.0 +2.2 /-1.8 mm/yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5-2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the c. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the "on-off" behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8-13 ka) Garlock slip rate of 6.5±1.5 mm/yr. These observations indicate the occurrence of millennia-long strain "super-cycles" on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates. 1. Introduction The degree to which fault loading and strain release rates are constant in time and space is one the most fundamental, unresolved issues in modern tectonics. Analysis of faults reveals a wide range of behaviors, including: (1) relatively regular timing of earthquakes on some large strikeslip faults (e.g.,
We generated dense, high‐resolution 3‐D ground displacement maps for the 2016 MW 7.8 Kaikōura, New Zealand earthquake—the most geometrically and kinematically complex rupture yet recorded—from stereo WorldView optical satellite imagery using a new methodology that combines subpixel image correlation with a ray‐tracing approach. Our analysis reveals fundamental new details of near‐field displacement patterns, which cannot easily be obtained through other methods. From our detailed correlation maps, we measured fault slip in 3‐D along 19 faults at 500‐m spacing. Minimum resolvable horizontal slip is ~0.1 m, and vertical is ~0.5 m. Net slip measurements range from <1 to ~12 m. System‐level kinematic analysis shows that slip on faults north of the Hope fault was oriented primarily subparallel to the Pacific‐Australian plate motion direction. In contrast, slip on faults to the south was primarily at high angle to the plate motion and secondarily parallel to plate motion. Fault kinematics are in some locations consistent with long‐term uplift patterns, but inconsistent in others. Deformation within the Seaward Kaikōura Range may indicate an attempt by the plate boundary fault system to geometrically simplify. Comparison of published field measurements along the Kekerengu fault with our correlation‐derived measurements reveals that ~36% of surface displacement was accommodated as distributed off‐fault deformation when considering only field measurements of discrete slip. Comparatively, field measurements that project previously linear features (e.g., fence lines) into the fault over apertures >5–100 m capture nearly all (~90%) of the surface deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.