Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required. The objectives of this study were to evaluate the production of tannase by Aspergillus and Penicillium species through SSF using leaves and agroindustrial waste barbados cherry and mangaba fruit as substrate, select the best producer, optimize production, characterize the crude enzyme extract, and apply it the clarification of grape juice. Selecting the best producer was performed by planning Placket-Burman and RSM. P. montanense showed highest activity with 41.64 U/mL after 72 h of fermentation residue using barbados cherry, with 3.5% tannic acid and 70% moisture. The enzyme showed the highest activity at pH 9.0 and 50°C. The tannase of P. montanense was stable over a wide pH range and temperature and, when applied to grape juice, showed higher efficiency by reducing 46% of the tannin content after incubation 120 m.
Caatinga is characterised as being a unique semi-arid biome only found in Brazil. It is characterised mainly for its soil poor in mineral and organic nutrients, and low water activity. On the other hand, Atlantic Forest is mainly characterised by its nutrient-rich soil, and its high water activity. Fungi are important constituents of both biomes. Among the fungi frequently isolated from soil of both Caatinga and Atlantic Forest, species of Penicillium are prominent. The richness, abundance, evenness, and dominance of species of Penicillium in soils of the Caatinga and Atlantic Forest areas in Pernambuco, Brazil, were analyzed. The influence of seasonality (rainy and dry seasons) on the communities of species of Penicillium in each biome and their distribution was assessed. A total of 815 Penicillium isolates was found. From this total amount, 370 isolates were found in the Caatinga soil, whereas 445 were found in the Atlantic Forest soil. Thirty-one species were morphologically identified, with 23 of them in the Caatinga soil and 17 in the Atlantic Forest soil. In addition, three isolates from Caatinga soil were only identified to genus. The present study revealed that soils from Caatinga and Atlantic Forest have a high diversity of species of Penicillium, with the Caatinga presenting rare species. Furthermore, the communities of Penicillium species are very different, but well distributed in each biome. In the dry season, there was greater species richness in areas of the two biomes, indicating that the species may be well adapted to low soil water availability for the development and maintenance of balanced communities.
Tannase is a biotechnologically important enzyme that can be produced during fungal fermentation of organic matter. The Caatinga is an exclusive Brazilian ecosystem that has been largely unexplored by science, particularly its filamentous fungal diversity. This study evaluated the diversity of filamentous fungi in the Caatinga soils of Pernambuco, Brazil, and their potential for tannase production by solid-state fermentation (SSF) of mango (Mangifera indica L.) and Surinam cherry (Eugenia uniflora L.) leaves. A total of 4711 isolates were obtained, 2090 during the rainy seasonand 2621 during the dry season. The isolates belonged to 18 genera and 66 species, with Aspergillus and Penicillium having the highest species richness. The dry season had a higher diversity index. Aspergillus was the dominant genus, and A. flavus, A. sclerotiorum, and A. ochraceus the most abundant species. A representative of each species was tested for tannase production using dried mango and Surinam cherry leaves as substrates; the leaves contained 14.28 and 7.0 g/L tannin, respectively. Most fungal species produced tannase, but the highest yields were obtained when mango leaves were used as substrate for Penicillium restrictum (accession URM 6044), Aspergillus flavofurcatus (URM 6142), and A. stromatoides (URM 6609), which produced 104.16, 87.51, and 81.83 U/mL tannase, respectively. These yields exceeded previously published reports. Filamentous fungi from Caatinga soils have great potential for producing tannase by SSF, and low-cost mango leaves make excellent substrate.
To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m 3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%), Penicillium (21%), Talaromyces (14%), Curvularia and Paecilomyces (7% each). Aspergillus sydowii (Bainier & Sartory) Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.
Penicillium and Talaromyces are fungal genera with high ecological and biotechnological importance. However, studies on exploration and ecology of these fungi in soils are scarce. The objectives of this study were to evaluate the species diversity of these genera in soils of sugarcane and fallow. Identification of the isolates was performed by morphological examination and partial sequencing of Beta-tubulin. For ecological analyses, indexes were applied and principal component analysis (PCA) was performed. A total of 1,344 isolates were obtained: 1,108 of Penicillium (13 species) and 236 of Talaromyces (three species). Seven isolates did not cluster with any known species. The diversity and equitability indexes were similarly high for the two areas analyzed. Penicillium wotroi and Talaromyces murroi were more abundant. The PCA was significant and showed 2 groups: fallow and cultivated. Soils of sugarcane cultivation present distinct communities of Penicillium and Talaromyces species that are rare and/or not yet described by science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.