Abstract. Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and preventing the addition or loss of actin monomers. To examine the in vivo role of CP, we have performed a molecular and genetic characterization of the [3 subunit of capping protein from Drosophila melanogaster. We have identified mutations in the Drosophila [3 subunit--these are the first CP mutations in a multicellular organism, and unlike CP mutations in yeast, they are lethal, causing death during the early larval stage. Adult flies that are heterozygous for a pair of weak alleles have a defect in bristle morphology that is correlated to disorganized actin bundles in developing bristles. Our data demonstrate that CP has an essential function during development, and further suggest that CP is required to regulate actin assembly during the development of specialized structures that depend on actin for their morphology.
Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function phenotype. The interaction between cpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell.
Drosophila melanogaster bristle development is dependent on actin assembly, and prominent actin bundles form against the elongating cell membrane, giving the adult bristle its characteristic grooved pattern. Previous work has demonstrated that several actin-regulating proteins are required to generate normal actin bundles. Here we have addressed how two actin regulators, capping protein, a barbed end binding protein, and the Arp2/3 complex, a potent actin assembly nucleator, function to generate properly organized bundles. As predicted from studies in motile cells, we find that capping protein and the Arp2/3 complex act antagonistically to one another during bristle development. However, these proteins do not primarily act directly on bundles, but rather on a dynamic population of actin filaments that are not part of the bundles. These nonbundle filaments, termed snarls, play an important role in determining the number and spacing of the actin bundles. Reduction of capping protein leads to an increase in snarls, which prevents actin bundles from properly attaching to the membrane. Conversely, loss of an Arp2/3 complex component leads to a loss of snarls and accumulation of excess membrane-attached bundles. These results indicate that in nonmotile cells dynamic actin filaments can function to regulate the positioning of stable actin structures. In addition, our results suggest that the Arpc1 subunit may have an additional function, independent of the rest of the Arp2/3 complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.