To evaluate brain development longitudinally in premature infants without abnormalities as compared to healthy full-term newborns, we assessed fMRI brain activity patterns in response to linguistic stimuli and white matter structural development focusing on language-related fibres. A total sample of 29 preterm newborns and 26 at term control newborns underwent both fMRI and DTI. Griffiths test was performed at 6 months of corrected age to assess development. Auditory fMRI data were analysed in 17 preterm newborns at three time points [34, 41 and 44 weeks of post menstrual age (wPMA)] and in 15 controls, at term. Analysis showed a distinctive pattern of cortical activation in preterm newborns up to 29 wPMA moving from early prevalent left temporal and supramarginal area activation in the preterm period, to a bilateral temporal and frontoopercular activation in the at term equivalent period and to a more fine-grained left pattern of activity at 44 wPMA. At term controls showed instead greater bilateral posterior thalamic activation. The different pattern of brain activity associated to preterm newborns mirrors their white matter maturation delay in peripheral regions of the fibres and thalamo-cortical radiations in subcortical areas of both hemispheres, pointing to different transient thalamo-cortical development due to prematurity. Evidence for functional thalamic activation and more mature subcortical tracts, including thalamic radiations, may represent the substantial gap between preterm and at term infants. The transition between bilateral temporal activations at term age and leftward activations at 44 weeks of PMA is correlated to better neuropsychological results in Griffiths test.
Background: The ability to detect the spatial characteristics of objects and to rotate them mentally is frequently impaired in early treated congenital hypothyroidism (CH) children. Aims: To explore the neural substrate of the visuospatial difficulty in children with CH, we studied 15 children with CH (8–10 years) and 13 age-matched control children with functional magnetic resonance imaging (fMRI) using a mental rotation task (VST). Results: Performance at VST was significantly different between the two groups. Moreover, fMRI data showed greater activation in the superior parietal cortex in control children while children with CH had greater activation in the bilateral SMA and the opercular region of the precentral gyrus, the adjacent insula and the left somatosensory parietal cortex. Furthermore, children with CH deactivated the inferior parietal cortex (Brodmann area 40) more than controls. Conclusion: We suggest that the poorer performance of children with CH on VST task is related to the decreased activation in brain areas important for the mental representation of the objects’ spatial characteristics, with increased recruitment of regions involved in the representation of somatosensory whole-body information. More studies will be necessary to understand if this different effectiveness in VST reflects immaturity of the neural system or its actual impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.