Cellular adhesion can be regulated by, as yet, poorly defined intracellular signalling events. Phospholipase D enzymes generate the messenger lipid phosphatidate and here we demonstrate that suppression of this reaction inhibits cellular adhesion. This effect was reversed by the addition of cell-permeable analogues of either phosphatidate or phosphatidylinositol 4,5-bisphosphate. By contrast, neither diacylglycerol nor lysophosphatidic acid were able to reverse this effect suggesting that phosphatidate itself acts directly on a target protein(s) to regulate adhesion rather than as the result of its conversion to either of these metabolite lipids. Antibodies that block β1 and β2 integrin-substrate interactions inhibited adhesion stimulated by both phosphatidate and phosphatidylinositol 4,5-bisphosphate indicating that these lipids regulate β1 and β2 integrin-mediated adhesion. In vivo, these lipids can be generated by phospholipase D2 and phosphatidylinositol 4-phosphate 5-kinase Iγb, respectively, and over-expression of catalytically-functional forms of these enzymes dose-dependently stimulated adhesion while siRNA depletion of PLD2 levels inhibited adhesion. Furthermore the ability of over-expressed phospholipase D2 to stimulate adhesion was inhibited by a dominant-negative version of phosphatidylinositol 4-phosphate 5-kinase Iγb. Consistent with this, phosphatidylinositol 4-phosphate 5-kinase Iγb-mediated adhesion was dependent upon phospholipase D2's product, phosphatidate indicating that phosphatidylinositol 4-phosphate 5-kinase Iγb is downstream of, and necessary for, phospholipase D2's regulation of adhesion. It is likely that this phospholipase D2-generated phosphatidate directly stimulates phosphatidylinositol 4-phosphate 5-kinase Iγb to generate phosphatidylinositol 4,5-bisphosphate as this mechanism has previously been demonstrated in vitro. Thus, our data indicates that during the initial stages of adhesion, phospholipase D2-derived phosphatidate stimulates phosphatidylinositol 4-phosphate 5-kinase Iγb to generate phosphatidylinositol 4,5-bisphosphate and that consequently this inositol phospholipid promotes adhesion through its regulation of cell-surface integrins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.