Activation of uterine inflammatory pathways leads to preterm labor (PTL), associated with high rates of neonatal mortality and morbidity. The transcription factors nuclear factor κB (NFκB) and activator protein 1 (AP‐1) regulate key proinflammatory and procontractile genes involved in normal labor and PTL. Here we show that (NFκB) activation normally occurs in the mouse myometrium at gestation day E18, prior to labor, whereas AP‐1 and JNK activation occurs at labor onset. Where labor was induced using the progesterone receptor antagonist RU486, NFkB and AP‐1/JNK activation both occurred at the time of labor (20 h compared to 60 h in DMSO‐treated controls). Using an LPS (Escherichia coli: serotype O111)‐induced PTL model that selectively activates AP‐1 but not NFkB, we show that myometrial AP‐1 activation drives production of cytokines (Il‐6, Il‐8, and Il‐1β), metalloproteinases (Mmp3 and Mmp10), and procontractile proteins (Cox‐2 and Cx43) resulting in PTL after 7 h. Protein levels of CX43 and IL‐1β, and IL‐1β cleavage, were increased following LPS‐induced activation of AP‐1. Inhibition of JNK by SP600125 (30 mg/kg) delayed PTL by 6 h (7.5 vs. 13.5 h P<0.05). Our data reveal that (NFκB) activation is not a functional requirement for infection/inflammation‐induced preterm labor and that AP‐1 activation is sufficient to drive inflammatory pathways that cause PTL.—MacIntyre, D. A., Lee, Y. S., Migale, R., Herbert, B. R., Waddington, S. N., Peebles, D., Hagberg, H., Johnson, M. R., Bennett, P. R. Activator protein 1 is a key terminal mediator of inflammation‐induced preterm labor in mice. FASEB J. 28, 2358–2368 (2014). http://www.fasebj.org
BackgroundPreterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data.MethodsMyometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data.ResultsWe identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse.ConclusionsLabor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human “functional progesterone withdrawal.” This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-016-0632-4) contains supplementary material, which is available to authorized users.
Intrauterine inflammation is recognized as a key mediator of both normal and preterm birth but is also associated with neonatal neurological injury. Lipopolysaccharide (LPS) is often used to stimulate inflammatory pathways in animal models of infection/inflammation-induced preterm labor; however, inconsistencies in maternal and neonatal responses to LPS are frequently reported. We hypothesized that LPS serotype-specific responses may account for a portion of these inconsistencies. Four different Escherichia coli LPS serotypes (O111:B4, O55:B5, O127:B8, and O128:B12) were administered to CD1 mice via intrauterine injection at gestational day 16. Although control animals delivered at term 60 ± 15 hours postinjection (p.i.), those administered with O111:B4 delivered 7 ± 2 hours p.i., O55:B5 delivered 10 ± 3 hours p.i., O127:B8 delivered 16 ± 10 hours p.i., and O128:B12 delivered 17 ± 2 hours p.i. (means ± SD). A correlation between the onset of preterm labor and myometrial activation of the inflammatory transcription factor, activator protein 1, but not NF-κB was observed. Specific LPS serotypes induced differential activation of downstream contractile and inflammatory pathways in myometrium and neonatal pup brain. Our findings demonstrate functional disparity in inflammatory pathway activation in response to differing LPS serotypes. Selective use of LPS serotypes may represent a useful tool for targeting specific inflammatory response mechanisms in these models.
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.