Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response.Human pluripotent stem cells (hPSCs) are an ideal cell source for the development of cell based assays for drug response. In addition to their extensive proliferation and genetic stability in culture, these human cells can give rise to primary cell types relevant for drug response, including cardiomyocytes, hepatocytes and neurons 1 . Individual differences in drug response can result from the effects of age, sex, disease, ancestry, or drug interactions, but genetic factors play a major role in influencing adverse drug reactions and ineffective therapy 2 . Thus, a collection of genetically diverse lines of hPSCs is required for a broader study of differential drug response in vitro 3 .To date, most lines of hPSCs available are of European or Eastern Asian ancestry 4 , although one hiPSC line from a Native American, and one from an African (Yoruba) have been reported 5 . More recently, one hiPSC line of African American and of Hispanic Latino ancestry each have been described, although the authors do not show the genetic evidence of those ethnicities 6 .The Brazilian population results from 500 years of admixture among the original Native Americans, Europeans (mostly Portuguese), and sub-Saharan Africans, most of which were brought to the country as slaves 7 . Different analyses of genomic ancestry in Brazil have shown that, on average, the urban population has 60% contribution from European, 25% from African, and 15% from Native American populations, although these proportions vary according to the Brazilian geographic region analyzed [7][8][9][10][11] . Therefore, from the genetic point of view the Brazilian population is significantly distinct from the ancestral populations, containing novel genotypes and haplotypes that may impact various phenotyp...
Normal mouse pluripotent stem cells were originally derived from the inner cell mass (ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryonic stem cells (ESCs). More than a decade later, pluripotent cells were isolated from the ICM of human blastocysts. Despite being called human ESCs, these cells differ significantly from mouse ESCs, including different morphology and mechanisms of control of pluripotency, suggesting distinct embryonic origins of ESCs from the two species. Subsequently, mouse pluripotent stem cells were established from the ICM-derived epiblast of post-implantation embryos. These mouse epiblast stem cells (EpiSCs) are morphological and epigenetically more similar to human ESCs. This raised the question of whether cells from the human ICM are in a more advanced differentiation stage than their murine counterpart, or whether the available culture conditions were not adequate to maintain those human cells in their in vivo state, leading to a transition into EpiSC-like cells in vitro. More recently, novel culture conditions allowed the conversion of human ESCs into mouse ESC-like cells called naïve (or ground state) human ESCs, and the derivation of naïve human ESCs from blastocysts. Here we will review the characteristics of each type of pluripotent stem cells, how (and whether) these relate to different stages of embryonic development, and discuss the potential implications of naïve human ESCs in research and therapy.
Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.