Background and aims
Complete surgical resection with negative margin is one of the pillars in treatment of liver tumours. However, current techniques for intra‐operative assessment of tumour resection margins are time‐consuming and empirical. Mass spectrometry (MS) combined with artificial intelligence (AI) is useful for classifying tissues and provides valuable prognostic information. The aim of this study was to develop a MS‐based system for rapid and objective liver cancer identification and classification.
Methods
A large dataset derived from 222 patients with hepatocellular carcinoma (HCC, 117 tumours and 105 non‐tumours) and 96 patients with mass‐forming cholangiocarcinoma (MFCCC, 50 tumours and 46 non‐tumours) were analysed by Probe Electrospray Ionization (PESI) MS. AI by means of support vector machine (SVM) and random forest (RF) algorithms was employed. For each classifier, sensitivity, specificity and accuracy were calculated.
Results
The overall diagnostic accuracy exceeded 94% in both the AI algorithms. For identification of HCC vs non‐tumour tissue, RF was the best, with 98.2% accuracy, 97.4% sensitivity and 99% specificity. For MFCCC vs non‐tumour tissue, both algorithms gave 99.0% accuracy, 98% sensitivity and 100% specificity.
Conclusions
The herein reported MS‐based system, combined with AI, permits liver cancer identification with high accuracy. Its bench‐top size, minimal sample preparation and short working time are the main advantages. From diagnostics to therapeutics, it has the potential to influence the decision‐making process in real‐time with the ultimate aim of improving cancer patient cure.
Patients with liver cirrhosis may develop minimal hepatic encephalopathy (MHE) which affects their quality of life and life span. It has been proposed that a shift in peripheral inflammation triggers the appearance of MHE. However, the mechanisms involved in this immune system shift remain unknown. In this work we studied the broad molecular changes involved in the induction of MHE with the goal of identifying (1) altered genes and pathways in peripheral blood cells associated to the appearance of MHE, (2) serum metabolites and cytokines with modified levels in MHE patients and (3) MHE-regulated immune response processes related to changes in specific serum molecules. We adopted a multi-omic approach to profile the transcriptome, metabolome and a panel of cytokines of blood samples taken from cirrhotic patients with or without MHE. Transcriptomic analysis supports the hypothesis of alternations in the Th1/Th2 and Th17 lymphocytes cell populations as major drivers of MHE. Cluster analysis of serum molecules resulted in six groups of chemically similar compounds, suggesting that functional modules operate during the induction of MHE. Finally, the multi-omic integrative analysis suggested a relationship between cytokines CCL20, CX3CL1, CXCL13, IL-15, IL-22 and IL-6 with alteration in chemotaxis, as well as a link between long-chain unsaturated phospholipids and the increased fatty acid transport and prostaglandin production. We found altered immune pathways that may collectively contribute to the mild cognitive impairment phenotype in MHE. Our approach is able to combine extracellular and intracellular information, opening new insights to the understanding of the disease.
We measured plasma and cerebrospinal fluid (CSF) metabolite concentrations in a 5-day porcine sepsis model of fecal peritonitis. The objectives were: (i) to verify whether the expected pathways that had emerged in previous studies pertain only to the early inflammatory response or persist for the subsequent days; (ii) to identify metabolic derangements that arise later; (iii) to verify whether CSF metabolite concentrations were altered and if these alterations were similar to those in the blood or delayed. We observed an early response to inflammation and cytokine storms with alterations in lipid and glucose metabolism. The arginine/asymmetric dimethylarginine (ADMA) and phenylalanine/tyrosine balances changed 24 h after resuscitation in plasma, and later in CSF. There was a rise in ammonia concentration, with altered concentrations of metabolites in the urea cycle. Whether persistent derangement of these pathways have a role not only on short-term outcomes but also on longer-term comorbidities, such as septic encephalopathy, should be addressed in further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.