BackgroundThe receptor kinase inhibitor toceranib phosphate (Palladia) was approved for use in dogs in 2009 using a dose of 3.25 mg/kg administered every other day. Preliminary data suggests that lower doses of toeceranib may be associated with a reduced adverse event profile while maintaining sufficient drug exposure to provide biologic activity. The purpose of this study was to determine the Cmax of toceranib in dogs with solid tumors receiving 2.5-2.75 mg/kg every other day and to document the adverse events associated with this dose rate. Secondary objectives included determination of plasma VEGF concentrations in treated dogs and response to therapy.ResultsDogs with solid tumors were administered toceranib at an intended target dose ranging from 2.5-2.75 mg/kg every other day and plasma samples were obtained for analysis of toceranib and VEGF plasma concentrations on days 0, 7, 14 and 30 of the study at 6 and 8 hours post drug administration. Additionally, plasma samples were obtained at 0, 1, 2, 6, 8, and 12 hours from dogs on day 30 for confirmation of Cmax. Response to therapy was assessed using standard RECIST criteria and adverse events were characterized using the VCOG-CTCAE. Toceranib administered at doses between 2.4-2.9 mg/kg every other day resulted in an average 6–8 hr plasma concentration ranging from 100–120 ng/ml, well above the 40 ng/ml concentration associated with target inhibition. Plasma VEGF concentrations increased significantly over the 30 day treatment period indicating that VEGFR2 inhibition was likely achieved in the majority of dogs. The lower doses of toceranib used in this study were associated with a substantially reduced adverse event profile compared to the established label dose of 3.25 mg/kg EOD.ConclusionsDoses of toceranib ranging from 2.4-2.9 mg/kg every other day provide drug exposure considered sufficient for target inhibition while resulting in an adverse event profile substantially reduced from that associated with the label dose of toceranib. This lower dose range of toceranib should be considered for future use in dogs with cancer.
BackgroundWe hypothesized that the addition of toceranib to metronomic cyclophosphamide/piroxicam therapy would significantly improve disease-free interval (DFI) and overall survival (OS) in dogs with appendicular osteosarcoma (OSA) following amputation and carboplatin chemotherapy.Methods and FindingsThis was a randomized, prospective clinical trial in which dogs with OSA free of gross metastatic disease (n = 126) received carboplatin chemotherapy (4 doses) following amputation. On study entry, dogs were randomized to receive piroxicam/cyclophosphamide with or without toceranib (n = 63 each) after completing chemotherapy. Patient demographics were not significantly different between both groups. During or immediately following carboplatin chemotherapy, 32 dogs (n = 13 toceranib; n = 19 control) developed metastatic disease, and 13 dogs left the study due to other medical conditions or owner preference. Following carboplatin chemotherapy, 81 dogs (n = 46 toceranib; n = 35 control) received the metronomic treatment; 35 dogs (n = 20 toceranib; n = 15 control) developed metastatic disease during the maintenance therapy, and 26 dogs left the study due to other medical conditions or owner preference. Nine toceranib-treated and 11 control dogs completed the study without evidence of metastatic disease 1-year following amputation. Toceranib-treated dogs experienced more episodes of diarrhea, neutropenia and weight loss than control dogs, although these toxicities were low-grade and typically resolved with supportive care. More toceranib-treated dogs (n = 8) were removed from the study for therapy-associated adverse events compared to control dogs (n = 1). The median DFI for control and toceranib treated dogs was 215 and 233 days, respectively (p = 0.274); the median OS for control and toceranib treated dogs was 242 and 318 days, respectively (p = 0.08). The one year survival rate for control dogs was 35% compared to 38% for dogs receiving toceranib.ConclusionsThe addition of toceranib to metronomic piroxicam/cyclophosphamide therapy following amputation and carboplatin chemotherapy did not improve median DFI, OS or the 1-year survival rate in dogs with OSA.
BackgroundSpenic hemangiosarcoma (HSA) in dogs treated with surgery alone is associated with short survival times, and the addition of doxorubicin (DOX) chemotherapy only modestly improves outcome. The purpose of this study was to evaluate the impact of toceranib administration on progression free survival in dogs with stage I or II HSA following splenectomy and single agent DOX chemotherapy. We hypothesized that dogs with splenic HSA treated with adjuvant DOX followed by toceranib would have prolonged disease-free interval (DFI) and overall survival time (OS) when compared to historical dogs treated with DOX-based chemotherapy alone.ResultsDogs with stage I or II splenic HSA were administered 5 cycles of single-agent DOX every 2 weeks beginning within 14 days of splenectomy. Dogs were restaged 2 weeks after completing DOX, and those without evidence of metastatic disease began toceranib therapy at 3.25 mg/kg every other day. Forty-three dogs were enrolled in this clinical trial. Seven dogs had evidence of metastatic disease either before or at re-staging, and an additional 3 dogs were found to have metastatic disease within 1 week of toceranib administration. Therefore 31 dogs went on to receive toceranib following completion of doxorubicin treatment. Twenty-five dogs that received toceranib developed metastatic disease. The median disease free interval for all dogs enrolled in this study (n = 43) was 138 days, and the median disease free interval for those dogs that went on to receive toceranib (n = 31) was 161 days. The median survival time for all dogs enrolled in this study was 169 days, and the median survival time for those dogs that went on to receive toceranib was 172 days.ConclusionsThe use of toceranib following DOX chemotherapy does not improve either disease free interval or overall survival in dogs with stage I or II HSA.
BackgroundEffective therapies for transitional cell carcinoma (TCC) are limited, with objective response rates to most chemotherapeutic regimens below 20%. The purpose of this study was to investigate the biologic activity of combined toceranib phosphate and vinblastine chemotherapy for treatment of TCC. A secondary objective was to compare the utility of Computed Tomography (CT) and abdominal ultrasound (AUS) in tumor response assessments.ResultsDogs with TCC received vinblastine at 1.6 mg/m2 every 2 weeks and toceranib at 2.5–2.75 mg/kg on Monday/Wednesday/Friday. Tumor monitoring was achieved through CT and AUS. Five patients completed the 16-week study. Based on AUS assessments, 3 dogs experienced biologic response to therapy including partial responses (PR, n = 2) and stable disease (SD, n = 1). Based on CT, 5 dogs experienced a biologic response (n = 2 PR, n = 3 SD). Both imaging modalities (ultrasound and CT) were found to provide repeatable measurements between operators, however agreement between operator measurements was greater when CT images were used to assess tumor size.ConclusionsThe combination of toceranib and vinblastine did not result in improved response rates. While agreement in tumor volume assessments between both AUS and CT were excellent between operators, this did not extend to assessment of tumor response. The higher rate of concordance between operators when assessing response to treatment with CT suggests that CT should be considered for future clinical trials involving canine bladder TCC to improve the accuracy and repeatability of tumor measurement. The data suggest that response to therapy as assessed by AUS or CT do not predict duration of clinical response.
BackgroundTransforming growth factor beta 1 (TGFβ1) is a pleiotropic cytokine that contributes to reparative skeletal remodeling by inducing osteoblast proliferation, migration, and angiogenesis. Organic bone matrix is the largest bodily reservoir for latent TGFβ1, and active osteoblasts express cognate receptors for TGFβ1 (TGFβRI and TGFβRII). During malignant osteolysis, TGFβ1 is liberated from eroded bone matrix and promotes local progression of osteotropic solid tumors by its mitogenic and prosurvival activities.HypothesisCanine osteosarcoma (OS) cells will possess TGFβ1 signaling machinery. Blockade of TGFβ1 signaling will attenuate pro‐tumorigenic activities in OS cells. Naturally occurring primary OS samples will express cognate TGFβ1 receptors; and in dogs with OS, focal malignant osteolysis will contribute to circulating TGFβ1 concentrations.AnimalsThirty‐three dogs with appendicular OS.MethodsExpression of TGFβ1 and its cognate receptors, as well as the biologic effects of TGFβ1 blockade, was characterized in OS cells. Ten spontaneous OS samples were characterized for TGFβRI/II expressions by immunohistochemistry. In 33 dogs with OS, plasma TGFβ1 concentrations were quantified and correlated with bone resorption.ResultsCanine OS cells secrete TGFβ1, express cognate receptors, and TGFβ1 signaling blockade decreases proliferation, migration, and vascular endothelial growth factor secretion. Naturally occurring OS samples abundantly and uniformly express TGFβRI/II, and in OS‐bearing dogs, circulating TGFβ1 concentrations correlate with urine N‐telopeptide excretion.Conclusions and Clinical ImportanceCanine OS cells possess TGFβ1 signaling machinery, potentially allowing for the establishment of an autocrine and paracrine pro‐tumorigenic signaling loop. As such, TGFβ1 inhibitors might impede localized OS progression in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.