Corynebacterium pseudotuberculosis is the aetiological agent of caseous lymphadenitis (CLA), a debilitating disease of sheep and goats. Accurate diagnosis of CLA primarily relies on microbiological examination, followed by biochemical identification of isolates. In an effort to facilitate C. pseudotuberculosis detection, a multiplex PCR (mPCR) assay was developed targeting three genes of this bacterium: the 16S rRNA gene, rpoB and pld. This method allowed efficient identification of 40 isolates of this bacterium that had been identified previously by biochemical testing. Analysis of taxonomically related species did not generate the C. pseudotuberculosis mPCR amplification profile, thereby demonstrating the assay's specificity. As little as 1 pg of C. pseudotuberculosis genomic DNA was detected by this mPCR assay, demonstrating the sensitivity of the method. The detection limit in clinical samples was estimated to be 103 c.f.u. C. pseudotuberculosis could be detected directly in pus samples from infected sheep and goats (n=56) with a high diagnostic sensitivity (94.6 %). The developed assay significantly improves rapid C. pseudotuberculosis detection and could supersede bacteriological culture for microbiological and epidemiological diagnosis of CLA.
Hippocampus-dependent memories, such as social recognition (SRM), are modulated by neurogenesis. However, the precise role of newborn neurons in social memory processing is still unknown. We showed previously that 1 week of enriched environment (EE) is sufficient to increase neurogenesis in the hippocampus (HIP) and the olfactory bulb (OB) of mice. Here, we tested the hypothesis that 1 week of EE would enhance SRM persistence and strength. In addition, as brain-derived neurotrophic factor (BDNF) may mediate some of the neurogenesis effects on memory, we also tested if 1 week of EE would increase BDNF expression in the HIP and OB. We also predicted that neurogenesis inhibition would block the gain of function caused by EE on both SRM and BDNF expression. We found that EE increased BDNF expression in the HIP and OB of mice; at the same time, it allowed SRM to last longer. In addition, mice on EE had their SRM unaffected by memory consolidation interferences. As we predicted, treatment with the anti-mitotic drug AraC blocked EE effects on SRM. Surprisingly, neurogenesis inhibition did not affect the BDNF expression, increased by EE. Together, our results suggest that newborn neurons improve SRM persistence through a BDNF-independent mechanism. Interestingly, this study on social memory uncovered an unexpected dissociation between the effect of adult neurogenesis and BDNF expression on memory persistence, reassuring the idea that not all neurogenesis effects on memory are BDNF-dependent.
Neuroimmune interactions underlying the development of pain sensitization in models of neuropathic pain have been widely studied. In this study, we evaluated the development of allodynia and its reduction associated with peripheral antineuroinflammatory effects induced by a dexamethasone-loaded biodegradable implant. Chronic constriction injury (CCI) of the sciatic nerve was performed in Wistar rats. The electronic von Frey test was applied to assess mechanical allodynia. The dexamethasone-loaded implant was placed perineurally at the moment of CCI or 12 days after surgery. Dorsal root ganglia (DRG; L4-L5) were harvested and nuclear extracts were assayed by Western blot for detection of nuclear factor (NF)-κB p65/RelA translocation. Dexamethasone delivered from the implant delayed the development of allodynia for approximately three weeks in CCI rats when the implantation was performed at day 0, but allodynia was not reversed when the implantation was performed at day 12. NF-κB was activated in CCI rat DRG compared with naïve or sham animals (day 15), and dexamethasone implant inhibited p65/ RelA translocation in CCI rats compared with control. This study demonstrated that the dexamethasoneloaded implant suppresses allodynia development and peripheral neuroinflammation. This device can reduce the potential side effects associated with oral anti-inflammatory drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.