The interaction between the flow of sentiment expressed on blogs and media and the dynamics of the stock market prices are analyzed through an information-theoretic measure, the transfer entropy, to quantify causality relations. We analyzed daily stock price and daily social media sentiment for the top 50 companies in the Standard & Poor (S&P) index during the period from November 2018 to November 2020. We also analyzed news mentioning these companies during the same period. We found that there is a causal flux of information that links those companies. The largest fraction of significant causal links is between prices and between sentiments, but there is also significant causal information which goes both ways from sentiment to prices and from prices to sentiment. We observe that the strongest causal signal between sentiment and prices is associated with the Tech sector.
Textual analysis is a widely used methodology in several research areas. In this paper we apply textual analysis to augment the conventional set of account defaults drivers with new text based variables. Through the employment of ad hoc dictionaries and distance measures we are able to classify each account transaction into qualitative macro-categories. The aim is to classify bank account users into different client profiles and verify whether they can act as effective predictors of default through supervised classification models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.