Most tumors have an aberrantly activated lipid metabolism 1 , 2 , which enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive toward approaches targeting fatty acid metabolism, and in particular fatty acid desaturation 3 . This suggests that many cancer cells harbor an unexplored plasticity in their fatty acid metabolism. Here, we discover that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, murine hepatocellular carcinomas (HCC), and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known stearoyl-CoA desaturase (SCD)-dependent fatty acid desaturation. Thus, only by targeting both desaturation pathways the in vitro and in vivo proliferation of sapienate synthesizing cancer cells is impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.
Cellular proliferation depends on refilling the tricarboxylic acid (TCA) cycle to support biomass production (anaplerosis). The two major anaplerotic pathways in cells are pyruvate conversion to oxaloacetate via pyruvate carboxylase (PC) and glutamine conversion to α-ketoglutarate. Cancers often show an organ-specific reliance on either pathway. However, it remains unknown whether they adapt their mode of anaplerosis when metastasizing to a distant organ. We measured PC-dependent anaplerosis in breast-cancer-derived lung metastases compared to their primary cancers using in vivo C tracer analysis. We discovered that lung metastases have higher PC-dependent anaplerosis compared to primary breast cancers. Based on in vitro analysis and a mathematical model for the determination of compartment-specific metabolite concentrations, we found that mitochondrial pyruvate concentrations can promote PC-dependent anaplerosis via enzyme kinetics. In conclusion, we show that breast cancer cells proliferating as lung metastases activate PC-dependent anaplerosis in response to the lung microenvironment.
Regorafenib, a novel multikinase inhibitor, has recently demonstrated overall survival benefits in metastatic colorectal cancer (CRC) patients. Our study aimed to gain further insight into the molecular mechanisms of regorafenib and to assess its potential in combination therapy. Regorafenib was tested alone and in combination with irinotecan in patient-derived (PD) CRC models and a murine CRC liver metastasis model. Mechanism of action was investigated using in vitro functional assays, immunohistochemistry and correlation with CRC-related oncogenes. Regorafenib demonstrated significant inhibition of growth-factor-mediated vascular endothelial growth factor receptor (VEGFR) 2 and VEGFR3 autophosphorylation, and intracellular VEGFR3 signaling in human umbilical vascular endothelial cells (HuVECs) and lymphatic endothelial cells (LECs), and also blocked migration of LECs. Furthermore, regorafenib inhibited proliferation in 19 of 25 human CRC cell lines and markedly slowed tumor growth in five of seven PD xenograft models. Combination of regorafenib with irinotecan significantly delayed tumor growth after extended treatment in four xenograft models. Reduced CD31 staining indicates that the antiangiogenic effects of regorafenib contribute to its antitumor activity. Finally, regorafenib significantly delayed disease progression in a murine CRC liver metastasis model by inhibiting the growth of established liver metastases and preventing the formation of new metastases in other organs. In addition, our results suggest that regorafenib displays antimetastatic activity, which may contribute to its efficacy in patients with metastatic CRC. Combination of regorafenib and irinotecan demonstrated an increased antitumor effect and could provide a future treatment option for CRC patients.What's new?Regorafenib is a multikinase inhibitor with antiangiogenic activity recently approved in the US and in Europe for the treatment of metastatic colorectal cancer in patients who failed previous therapies. Here, a research team led by Bayer Pharma AG, the discoverer of the drug, confirms inhibition of key mediators of angiogenesis and lymphangiogenesis (VEGFR2 and VEGFR3) as the potential antiangiogenic mechanism of action of the drug. Regorafenib further inhibited growth of established and prevented formation of new liver metastases, and in combination with the chemotherapeutic drug irinotecan led to significant tumor growth delay in four patient-derived colorectal cancer xenograft models. The authors speculate that combination treatments including regorafenib may provide novel therapeutic opportunities for patients with therapy-resistant colorectal cancer.
KEYWORDS:Cancer metabolism, metabolic therapy, tissue specific metabolism, genetic drivers, epigenetic drivers, microenvironment, Warburg effect, reverse Warburg effect, mixed Warburg effect, triple-negative breast cancer, estrogen receptor positive breast cancer; prostate cancer, liver cancer, gluconeogenesis, fatty acid metabolism, glucose metabolism, glutamine metabolism, serine metabolism, metabolic normalization, metabolic depletion ABSTRACTTargeting the metabolism of cancer cells has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor positive breast cancer, early and late stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g. Warburg versus reverse Warburg metabolism). Yet, for each of the cancers their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.
Summary The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network, nor to enhanced neurotrophin expression. Instead, PHD1−/− neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1−/− neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose from glycolysis. As a result, PHD1−/− neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a novel regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.