Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein that is highly overexpressed on prostate cancer epithelial cells and for which there is a growing body of literature examining the role of small-molecule and antibody radiotracers targeted against this protein for prostate cancer detection and therapy. Despite its name, PSMA is also expressed, to varying degrees, in the neovasculature of a wide variety of nonprostate cancers; indeed, the pathology literature is replete with promising immunohistochemistry findings. Several groups have begun to correlate those pathology-level results with in vivo imaging and therapy in nonprostate cancers using the same PSMA-targeted agents that have been so successful in prostate cancer. The potential to leverage radiotracers targeted to PSMA beyond prostate cancer is a promising approach for many cancers, and PSMA-targeted agents may be able to supplement or fill gaps left by other agents. However, to date, most of the reported findings with PSMA-targeted radiotracers in nonprostate malignancies have been in case reports and small case series, and the field must adopt a more thorough approach to the design and execution of larger prospective trials to realize the potential of these promising agents outside prostate cancer.
Resistance to BRAF inhibitor therapy places priority on developing BRAF inhibitor-based combinations that will overcome de novo resistance and prevent the emergence of acquired mechanisms of resistance. The CRM1 receptor mediates the nuclear export of critical proteins required for melanoma proliferation, survival, and drug resistance. We hypothesize that by inhibiting CRM1-mediated nuclear export, we will alter the function of these proteins resulting in decreased melanoma viability and enhanced BRAF inhibitor antitumoral effects. To test our hypothesis, selective inhibitors of nuclear export (SINE) analogs KPT-185, KPT-251, KPT-276, and KPT-330 were used to induce CRM1 inhibition. Analogs PLX-4720 and PLX-4032 were used as BRAF inhibitors. Compounds were tested in xenograft and in vitro melanoma models. In vitro, we found CRM1 inhibition decreases melanoma cell proliferation independent of BRAF mutation status and synergistically enhances the effects of BRAF inhibition on BRAF-mutant melanoma by promoting cell-cycle arrest and apoptosis. In melanoma xenograft models, CRM1 inhibition reduces tumor growth independent of BRAF or NRAS status and induces complete regression of BRAF V600E tumors when combined with BRAF inhibition. Mechanistic studies show that CRM1 inhibition was associated with p53 stabilization and retinoblastoma protein (pRb) and survivin modulation. Furthermore, we found that BRAF inhibition abrogates extracellular signalregulated kinase phosphorylation associated with CRM1 inhibition, which may contribute to the synergy of the combination. In conclusion, CRM1 inhibition impairs melanoma survival in both BRAF-mutant and wild-type melanoma. The combination of CRM1 and BRAF inhibition synergizes and induces melanoma regression in BRAF-mutant melanoma.
Purpose Based on preclinical data suggesting that the class I selective HDAC inhibitor entinostat exerts a synergistic antitumor effect in combination with high dose interleukin 2 (IL-2) in a renal cell carcinoma model by down-regulating Foxp3 expression and function of regulatory T cells (Treg), we conducted a phase I/II clinical study with entinostat and high dose IL-2 in patients with metastatic clear cell renal cell carcinoma (ccRCC). Experimental Design Clear cell histology, no prior treatments, and being sufficiently fit to receive high dose IL-2 were the main eligibility criteria. The phase I portion consisted of two dose levels of entinostat (3 and 5 mg, PO every14 days) and a fixed standard dose of IL-2 (600,000 units/kg IV). Each cycle was 85 days. The primary end point was objective response rate and toxicity. Secondary end points included progression-free survival and overall survival. Results 47 patients were enrolled. At a median follow-up of 21.9 months, the objective response rate was 37% (95% CI 22%–53%), the median progression-free survival was 13.8 months (95% CI 6.0–18.8), and the median overall survival was 65.3 months (95% CI 52.6.–65.3). The most common grade 3/4 toxicities were hypophosphatemia (16%), lymphopenia (15%), and hypocalcemia (7%), and all were transient. Decreased Treg were observed following treatment with entinostat, and lower numbers were associated with response (p=0.03). Conclusions This trial suggests a promising clinical activity for entinostat in combination with high dose Il-2 in ccRCC patients, and provides the first example of an epigenetic agent being rationally combined with immunotherapy.
High-grade gliomas (World Health Organization grade III-IV) are highly lethal primary brain tumors. Imaging modalities, including MRI and FDG PET, provide a limited ability to differentiate treatment effects (such as radiation necrosis) from recurrent or residual tumor. As the first step in validating the applicability of prostate-specific membrane antigen (PSMA)-targeted imaging in high-grade gliomas, we evaluated the ability of the PSMA-targeted small molecule
While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial Registrations: ClinicalTrials.gov NCT01006980;ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.