Under anoxic conditions, soluble pertechnetate (⁹⁹TcO₄⁻) can be reduced to less soluble TcO₂·nH₂O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zerovalent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 h to mimic the onset of aquifer biotic sulfate reduction. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between 0 and 0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO₄⁻ for FeS than iron oxides, and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS(-). X-ray absorption spectroscopy revealed that as S/Fe increased, the pathway for Tc(IV) formation shifted from TcO₂·nH2₂ to Tc sulfide phases. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase in Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.
Deficiencies in the activity of complex I (NADH: ubiquinone oxidoreductase) are an important cause of human mitochondrial disease. Complex I is composed of at least 46 structural subunits that are encoded in both nuclear and mitochondrial DNA. Enzyme deficiency can result from either impaired catalytic efficiency or an inability to assemble the holoenzyme complex; however, the assembly process remains poorly understood. We have used two-dimensional Blue-Native/SDS gel electrophoresis and a panel of 11 antibodies directed against structural subunits of the enzyme to investigate complex I assembly in the muscle mitochondria from four patients with complex I deficiency caused by either mitochondrial or nuclear gene defects. Immunoblot analyses of second dimension denaturing gels identified seven distinct complex I subcomplexes in the patients studied, five of which could also be detected in nondenaturing gels in the first dimension. Although the abundance of these intermediates varied among the different patients, a common constellation of subcomplexes was observed in all cases. A similar profile of subcomplexes was present in a human/mouse hybrid fibroblast cell line with a severe complex I deficiency due to an almost complete lack of assembly of the holoenzyme complex. The finding that diverse causes of complex I deficiency produce a similar pattern of complex I subcomplexes suggests that these are intermediates in the assembly of the holoenzyme complex. We propose a possible assembly pathway for the complex, which differs significantly from that proposed for Neurospora, the current model for complex I assembly.NADH:ubiquinone oxidoreductase (complex I; EC 1.6.5.3) is the largest and the least understood of all the respiratory chain complexes. Mammalian complex I is composed of at least 46 subunits, which are encoded by both nuclear (39 subunits) and mitochondrial DNA (7 subunits) (1-3). The complex, which has an estimated molecular mass of almost 1 MDa, catalyzes the transfer of two electrons from NADH to ubiquinone coupled to translocation of four protons across the inner mitochondrial membrane.Low resolution structures based on the electron microscopy of the bovine (4), Escherichia coli (5, 6), and Neurospora crassa (7) complex I show that the complex has an L-shaped form with one arm in the membrane and a peripheral arm protruding into the mitochondrial matrix. A second, horseshoe-shaped conformation of the E. coli complex I has also recently been proposed (8). The complex can be dissociated by treatment with detergent into three subcomplexes: I␣, corresponding to the peripheral arm and composed of ϳ21 mostly hydrophilic subunits, and I and I␥, both of which make up the membrane arm (9). Subcomplex I␣ contains the NADH binding site and most of the redox centers. All of the mtDNA-encoded 1 subunits and at least 16 of the nuclear-encoded subunits are found in the I and I␥ fractions of the membrane arm.
The Earth's crust hosts a subsurface, dark, and oligotrophic biosphere that is poorly understood in terms of the energy supporting its biomass production and impact on food webs at the Earth's surface. Dark oligotrophic volcanic ecosystems (DOVEs) are good environments for investigations of life in the absence of sunlight as they are poor in organics, rich in chemical reactants and well known for chemical exchange with Earth's surface systems. Ice caves near the summit of Mt. Erebus (Antarctica) offer DOVEs in a polar alpine environment that is starved in organics and with oxygenated hydrothermal circulation in highly reducing host rock. We surveyed the microbial communities using PCR, cloning, sequencing and analysis of the small subunit (16S) ribosomal and Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RubisCO) genes in sediment samples from three different caves, two that are completely dark and one that receives snow-filtered sunlight seasonally. The microbial communities in all three caves are composed primarily of Bacteria and fungi; Archaea were not detected. The bacterial communities from these ice caves display low phylogenetic diversity, but with a remarkable diversity of RubisCO genes including new deeply branching Form I clades, implicating the Calvin-Benson-Bassham (CBB) cycle as a pathway of CO2 fixation. The microbial communities in one of the dark caves, Warren Cave, which has a remarkably low phylogenetic diversity, were analyzed in more detail to gain a possible perspective on the energetic basis of the microbial ecosystem in the cave. Atmospheric carbon (CO2 and CO), including from volcanic emissions, likely supplies carbon and/or some of the energy requirements of chemoautotrophic microbial communities in Warren Cave and probably other Mt. Erebus ice caves. Our work casts a first glimpse at Mt. Erebus ice caves as natural laboratories for exploring carbon, energy and nutrient sources in the subsurface biosphere and the nutritional limits on life.
We have reinvestigated a young woman, originally reported by us in 1983, who presented with exercise intolerance and lactic acidosis associated with severe deficiency of complex III and who responded to therapy with menadione and ascorbate. Gradually, she developed symptoms of a mitochondrial encephalomyopathy. Immunocytochemistry of serial sections of muscle showed a mosaic of fibers that reacted poorly with antibodies to subunits of complex III but reacted normally with antibodies to subunits of complexes I, II, or IV, suggesting a mutation of mtDNA. These findings demonstrate the diagnostic value of immunocytochemistry in identifying specific respiratory-chain deficiencies and, potentially, distinguishing between nuclear- or mtDNA-encoded defects. Sequence analysis revealed a stop-codon mutation (G15242A) in the mtDNA-encoded cytochrome b gene, resulting in loss of the last 215 amino acids of cytochrome b. PCR-RFLP analysis indicated that the G15242A mutation was heteroplasmic and was present in a high percentage (87%) of affected tissue (skeletal muscle) and a low percentage (0.7%) of unaffected tissue (blood) but was not detected in controls. Analysis of microdissected muscle fibers showed a significant correlation between the immunoreactivity toward the Rieske protein of complex III and the percentage of mutant mtDNA: immunopositive fibers had a median value of 33% of the G15242A mutation, whereas immunonegative, ragged-red fibers had a median value of 89%, indicating that the stop-codon mutation was pathogenic in this patient. The G15242A mutation was also present in several other tissues, including hair roots, indicating that it must have arisen either very early in embryogenesis, before separation of the primary germ layers, or in the maternal germ line. The findings in this patient are contrasted with other recently described patients who have mutations in the cytochrome b gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.