Acrylamide and tridecyl acrylate copolymers were synthesized by micellar copolymerization to obtain water-soluble, hydrophobically modified polymers. Rheological properties of the obtained polymer solutions were evaluated and compared to those of solutions of a commercial polyacrylamide currently used in the petroleum industry. The behavior of the copolymer solutions was studied as a function of the variation of hydrophobic monomer content incorporated in the copolymer as well as the salt content of the aqueous medium, for diluted and semi-diluted regimens. Comparative studies of such effects on the intrinsic viscosity and the critical concentration of those polymers were conducted. The increase in hydrophobic monomer content produced a sudden increase in the bulk and absolute viscosity of the polymeric solutions, a trend that was more intense from a certain concentration typical for each polymer. Salt addition led to lower bulk viscosity caused by a stronger interaction among hydrophobic groups, resulting from minimized exposure of such groups and water. The same effect was observed for the critical concentration. A comparison of the synthesized polymers with industrial polyacrylamide showed that the synthesized polymers were characterized by advantageously high shear strength and high salt resistance. However, in the absence of salts, higher copolymer amounts were needed to prepare solutions whose viscosity was the same as that of commercial polyacrylamide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.