In multivariate time series, outlying data may be often observed that do not fit the common pattern. Occurrences of outliers are unpredictable events that may severely distort the analysis of the multivariate time series. For instance, model building, seasonality assessment, and forecasting may be seriously affected by undetected outliers. The structure dependence of the multivariate time series gives rise to the well-known smearing and masking phenomena that prevent using most outliers' identification techniques. It may be noticed, however, that a convenient way for representing multiple outliers consists of superimposing a deterministic disturbance to a gaussian multivariate time series. Then outliers may be modeled as nongaussian time series components. Independent component analysis is a recently developed tool that is likely to be able to extract possible outlier patterns. In practice, independent component analysis may be used to analyze multivariate observable time series and separate regular and outlying unobservable components. In the factor models framework too, it is shown that independent component analysis is a useful tool for detection of outliers in multivariate time series. Some algorithms that perform independent component analysis are compared. It has been found that all algorithms are effective in detecting various types of outliers, such as patches, level shifts, and isolated outliers, even at the beginning or the end of the stretch of observations. Also, there is no appreciable difference in the ability of different algorithms to display the outlying observations pattern.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Dynamic factor models have a wide range of applications in econometrics and
applied economics. The basic motivation resides in their capability of reducing
a large set of time series to only few indicators (factors). If the number of
time series is large compared to the available number of observations then most
information may be conveyed to the factors. This way low dimension models may
be estimated for explaining and forecasting one or more time series of
interest. It is desirable that outlier free time series be available for
estimation. In practice, outlying observations are likely to arise at unknown
dates due, for instance, to external unusual events or gross data entry errors.
Several methods for outlier detection in time series are available. Most
methods, however, apply to univariate time series while even methods designed
for handling the multivariate framework do not include dynamic factor models
explicitly. A method for discovering outliers occurrences in a dynamic factor
model is introduced that is based on linear transforms of the observed data.
Some strategies to separate outliers that add to the model and outliers within
the common component are discussed. Applications to simulated and real data
sets are presented to check the effectiveness of the proposed method.Comment: Published in at http://dx.doi.org/10.1214/07-EJS082 the Electronic
Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of
Mathematical Statistics (http://www.imstat.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.