The numerical approximation of nonlinear partial differential equations requires the computation of large nonlinear systems, that are typically solved by iterative schemes. At each step of the iterative process, a large and sparse linear system has to be solved, and the amount of time elapsed per step grows with the dimensions of the problem. As a consequence, the convergence rate may become very slow, requiring massive cpu-time to compute the solution. In all such cases, it is important to improve the rate of convergence of the iterative scheme. This can be achieved, for instance, by vector extrapolation methods. In this work, we apply some vector extrapolation methods to the electronic device simulation to improve the rate of convergence of the family of Gummel decoupling algorithms. Furthermore, a different approach to the topological ε-algorithm is proposed and preliminary results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.