Essential hypertension is a highly prevalent pathological condition that is considered as one of the most relevant cardiovascular risk factors and is an important cause of morbidity and mortality around the world. Despite the fact that mechanisms underlying hypertension are not yet fully elucidated, a large amount of evidence shows that oxidative stress plays a central role in its pathophysiology. Oxidative stress can be defined as an imbalance between oxidant agents, such as superoxide anion, and antioxidant molecules, and leads to a decrease in nitric oxide bioavailability, which is the main factor responsible for maintaining the vascular tone. Several vasoconstrictor peptides, such as angiotensin II, endothelin-1 and urotensin II, act through their receptors to stimulate the production of reactive oxygen species, by activating enzymes like NADPH oxidase and xanthine oxidase. The knowledge of the mechanism described above has allowed generating new therapeutic strategies against hypertension based on the use of antioxidants agents, including vitamin C and E, N-Acetylcysteine, polyphenols and selenium, among others. These substances have different therapeutic targets, but all represent antioxidant reinforcement. Several clinical trials using antioxidants have been made. The aim of the present review is to provide new insights about the key role of oxidative stress in the pathophysiology of essential hypertension and new clinical attempts to demonstrate the usefulness of antioxidant therapy in the treatment of hypertension.
Acute myocardial infarction (AMI) is the leading cause of death worldwide. Its associated mortality, morbidity and complications have significantly decreased with the development of interventional cardiology and percutaneous coronary angioplasty (PCA) treatment, which quickly and effectively restore the blood flow to the area previously subjected to ischemia. Paradoxically, the restoration of blood flow to the ischemic zone leads to a massive production of reactive oxygen species (ROS) which generate rapid and severe damage to biomolecules, generating a phenomenon called myocardial reperfusion injury (MRI). In the clinical setting, MRI is associated with multiple complications such as lethal reperfusion, no-reflow, myocardial stunning, and reperfusion arrhythmias. Despite significant advances in the understanding of the mechanisms accounting for the myocardial ischemia reperfusion injury, it remains an unsolved problem. Although promising results have been obtained in experimental studies (mainly in animal models), these benefits have not been translated into clinical settings. Thus, clinical trials have failed to find benefits from any therapy to prevent MRI. There is major evidence with respect to the contribution of oxidative stress to MRI in cardiovascular diseases. The lack of consistency between basic studies and clinical trials is not solely based on the diversity inherent in epidemiology but is also a result of the methodological weaknesses of some studies. It is quite possible that pharmacological issues, such as doses, active ingredients, bioavailability, routes of administration, co-therapies, startup time of the drug intervention, and its continuity may also have some responsibility for the lack of consistency between different studies. Furthermore, the administration of high ascorbate doses prior to reperfusion appears to be a safe and rational therapy against the development of oxidative damage associated with myocardial reperfusion. In addition, the association with N-acetylcysteine (a glutathione donor) and deferoxamine (an iron chelator) could improve the antioxidant cardioprotection by ascorbate, making it even more effective in preventing myocardial reperfusion damage associated with PCA following AMI.
Artículo de publicación ISISin acceso a texto completoHypertension is a highly prevalent disease worldwide. It is known for being one of the most important risk factors for developing cardiovascular disease, including acute myocardial infarction and stroke. Therefore, during the last decades there have been multiple efforts to fully understand the mechanisms underlying hypertension, and then develop effective therapeutic interventions to attenuate the morbidity and mortality associated with this condition. In this regard, oxidative stress has been proposed as a key mechanistic mediator of hypertension, which is an imbalance between oxidant species and the antioxidant defense systems. A large amount of evidence supports the role of vascular wall as a major source of reactive oxygen species. These include the activation of enzymes, such as NADPH oxidase and xanthine oxidase, the uncoupling eNOS and mitochondrial dysfunction, having as a major product the superoxide anion. Among the stimuli that increase the production of oxidative species can be found the action of some vasoactive peptides, such as angiotensin II, endothelin-1 and urotensin II. The oxidative stress state generated leads to a decrease in the biodisponibility of nitric oxide and prostacyclin, key factors in maintaining the vascular tone. The knowledge of the mechanisms mentioned above has allowed generating some therapeutic strategies using antioxidants as antihypertensives with different results. Further studies are required to position antioxidants as key agents in the treatment of hypertension. The current review summarize evidence of the role of oxidative stress in hypertension, emphasizing in therapeutic targets that can be consider in antioxidant therapy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.