The classic theory of direct-current (DC) insulator-based dielectrophoresis (iDEP) considers that, in order to elicit particle trapping, dielectrophoretic (DEP) velocity counterbalances electrokinetic (EK) motion, that is, electrophoresis (EP) and electro-osmotic flow (EOF). However, the particle velocity DEP component requires empirical correction factors (sometimes as high as 600) to account for experimental observations, suggesting the need for a refined model. Here, we show that, when applied to particle suspensions, a high-magnitude DC uniform electric field induces nonlinear particle velocities, leading to particle flow reversal beyond a critical field magnitude, referred to as the EK equilibrium condition. We further demonstrate that this particle motion can be described through an exploratory induced-charge EP nonlinear model. The model predictions were validated under an insulator-based microfluidic platform demonstrating predictive particle trapping for three different particle sizes (with an estimation error < 10%, not using correction factors). Our findings suggest that particle motion and trapping in “DC-iDEP” devices are dominated by EP and EOF, rather than by DEP effects.
In this study, the dielectrophoretic response of prostate tumor initiating cells (TICs) was investigated in a microfluidic system utilizing contactless dielectrophoresis (cDEP). The dielectrophoretic response of prostate TICs was observed to be distinctively different than that for non-TICs, enabling them to be sorted using cDEP. Culturing the sorted TICs generated spheroids, indicating that they were indeed initiating cells. This study presents the first marker-free TIC separation from non-TICs utilizing their electrical fingerprints through dielectrophoresis.
Exosomes are nanovesicles secreted by most cellular types that carry important biochemical compounds throughout the body with different purposes, playing a preponderant role in cellular communication. Because of their structure, physicochemical properties and stability, recent studies are focusing in their use as nanocarriers for different therapeutic compounds for the treatment of different diseases ranging from cancer to Parkinson's disease. However, current bioseparation protocols and methodologies are selected based on the final exosome application or intended use and present both advantages and disadvantages when compared among them. In this context, this review aims to present the most important technologies available for exosome isolation while discussing their advantages and disadvantages and the possibilities of being combined with other strategies. This is critical since the development of novel exosome‐based therapeutic strategies will be constrained to the effectiveness and yield of the selected downstream purification methodologies for which a thorough understanding of the available technological resources is needed.
In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems.
Electrokinetic techniques offer a great potential for biological particle manipulation. Among these, dielectrophoresis (DEP) has been successfully utilized for the concentration of bioparticles. Traditionally, DEP is performed employing microelectrodes, an approach with attractive characteristics but expensive due to microelectrode fabrication costs. An alternative is insulator-based DEP, a method where non-uniform electric fields are created with arrays of insulating structures. This study presents the concentration of linear DNA particles (pET28b) employing a microchannel, with an array of cylindrical insulating structures and direct current electric fields. Results showed manipulation of DNA particles with a combination of electroosmotic, electrophoretic, and dielectrophoretic forces. Employing suspending media with conductivity of 104 muS/cm and pH of 11.15, under applied fields between 500 and 1500 V/cm, DNA particles were observed to be immobilized due to negative dielectrophoretic trapping. The observation of DNA aggregates that occurred at higher applied fields, and dispersed once the field was removed is also included. Finally, concentration factors varying from 8 to 24 times the feed concentration were measured at 2000 V/cm after concentration time-periods of 20-40 s. The results presented here demonstrate the potential of insulator-based DEP for DNA concentration, and open the possibility for fast DNA manipulation for laboratory and large-scale applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.