Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid–electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used.
A hybrid propulsion system for a passenger car is described and its preliminary design and performance discussed. A gas turbine operating in a controlled on-off mode, a generator, a battery pack, an inverter, and an electric motor constitute the power system, with an electronic vehicle management unit supervising the system for control and regulation. Road simulation tests are presented, based on standard ECC driving mission cycles. The turbogas performance might be improved adopting ceramic blades, with a possible increase of the TIT (turbine inlet temperature), and a consequent increase of its efficiency. The paper reports on the first results of a study in progress, within a joint research program between the University of Roma 1 “La Sapienza” and the Italian Research Centre of ENEA-Casaccia.
Although tissue and cell manipulation nowadays is a common task in biomedical analysis, there are still many different ways to accomplish it, most of which are still not sufficiently general, inexpensive, accurate, efficient or effective. Several problems arise both for in vivo or in vitro analysis, such as the maximum overall size of the device and the gripper jaws (like in minimally-invasive open biopsy) or very limited manipulating capability, degrees of freedom or dexterity (like in tissues or cell-handling operations). This paper presents a new approach to tissue and cell manipulation, which employs a conceptually new conjugate surfaces flexure hinge (CSFH) silicon MEMS-based technology micro-gripper that solves most of the above-mentioned problems. The article describes all of the phases of the development, including topology conception, structural design, simulation, construction, actuation testing and in vitro observation. The latter phase deals with the assessment of the function capability, which consists of taking a series of in vitro images by optical microscopy. They offer a direct morphological comparison between the gripper and a variety of tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.